104 lines
3.2 KiB
Python
104 lines
3.2 KiB
Python
"""
|
|
This module implements a method to find
|
|
Euler-Lagrange Equations for given Lagrangian.
|
|
"""
|
|
from itertools import combinations_with_replacement
|
|
from sympy import Function, sympify, diff, Eq, S, Symbol, Derivative
|
|
from sympy.core.compatibility import iterable
|
|
|
|
|
|
def euler_equations(L, funcs=(), vars=()):
|
|
r"""
|
|
Find the Euler-Lagrange equations [1]_ for a given Lagrangian.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
L : Expr
|
|
The Lagrangian that should be a function of the functions listed
|
|
in the second argument and their derivatives.
|
|
|
|
For example, in the case of two functions `f(x,y)`, `g(x,y)` and
|
|
two independent variables `x`, `y` the Lagrangian would have the form:
|
|
|
|
.. math:: L\left(f(x,y),g(x,y),\frac{\partial f(x,y)}{\partial x},
|
|
\frac{\partial f(x,y)}{\partial y},
|
|
\frac{\partial g(x,y)}{\partial x},
|
|
\frac{\partial g(x,y)}{\partial y},x,y\right)
|
|
|
|
In many cases it is not necessary to provide anything, except the
|
|
Lagrangian, it will be auto-detected (and an error raised if this
|
|
couldn't be done).
|
|
|
|
funcs : Function or an iterable of Functions
|
|
The functions that the Lagrangian depends on. The Euler equations
|
|
are differential equations for each of these functions.
|
|
|
|
vars : Symbol or an iterable of Symbols
|
|
The Symbols that are the independent variables of the functions.
|
|
|
|
Returns
|
|
=======
|
|
|
|
eqns : list of Eq
|
|
The list of differential equations, one for each function.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Symbol, Function
|
|
>>> from sympy.calculus.euler import euler_equations
|
|
>>> x = Function('x')
|
|
>>> t = Symbol('t')
|
|
>>> L = (x(t).diff(t))**2/2 - x(t)**2/2
|
|
>>> euler_equations(L, x(t), t)
|
|
[Eq(-x(t) - Derivative(x(t), (t, 2)), 0)]
|
|
>>> u = Function('u')
|
|
>>> x = Symbol('x')
|
|
>>> L = (u(t, x).diff(t))**2/2 - (u(t, x).diff(x))**2/2
|
|
>>> euler_equations(L, u(t, x), [t, x])
|
|
[Eq(-Derivative(u(t, x), (t, 2)) + Derivative(u(t, x), (x, 2)), 0)]
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://en.wikipedia.org/wiki/Euler%E2%80%93Lagrange_equation
|
|
|
|
"""
|
|
|
|
funcs = tuple(funcs) if iterable(funcs) else (funcs,)
|
|
|
|
if not funcs:
|
|
funcs = tuple(L.atoms(Function))
|
|
else:
|
|
for f in funcs:
|
|
if not isinstance(f, Function):
|
|
raise TypeError('Function expected, got: %s' % f)
|
|
|
|
vars = tuple(vars) if iterable(vars) else (vars,)
|
|
|
|
if not vars:
|
|
vars = funcs[0].args
|
|
else:
|
|
vars = tuple(sympify(var) for var in vars)
|
|
|
|
if not all(isinstance(v, Symbol) for v in vars):
|
|
raise TypeError('Variables are not symbols, got %s' % vars)
|
|
|
|
for f in funcs:
|
|
if not vars == f.args:
|
|
raise ValueError("Variables %s don't match args: %s" % (vars, f))
|
|
|
|
order = max(len(d.variables) for d in L.atoms(Derivative)
|
|
if d.expr in funcs)
|
|
|
|
eqns = []
|
|
for f in funcs:
|
|
eq = diff(L, f)
|
|
for i in range(1, order + 1):
|
|
for p in combinations_with_replacement(vars, i):
|
|
eq = eq + S.NegativeOne**i*diff(L, diff(f, *p), *p)
|
|
eqns.append(Eq(eq, 0))
|
|
|
|
return eqns
|