Generateurv2/backend/env/lib/python3.10/site-packages/sympy/matrices/densesolve.py
2022-06-24 17:14:37 +02:00

449 lines
11 KiB
Python

"""
Solution of equations using dense matrices.
The dense matrix is stored as a list of lists.
"""
import copy
from sympy.core.power import isqrt
from sympy.core.symbol import symbols
from sympy.matrices.densetools import (
augment, col, conjugate_transpose, eye, rowadd, rowmul)
from sympy.utilities.exceptions import SymPyDeprecationWarning
SymPyDeprecationWarning(
feature="densesolve",
issue=12695,
deprecated_since_version="1.1").warn()
def row_echelon(matlist, K):
"""
Returns the row echelon form of a matrix with diagonal elements
reduced to 1.
Examples
========
>>> from sympy.matrices.densesolve import row_echelon
>>> from sympy import QQ
>>> a = [
... [QQ(3), QQ(7), QQ(4)],
... [QQ(2), QQ(4), QQ(5)],
... [QQ(6), QQ(2), QQ(3)]]
>>> row_echelon(a, QQ)
[[1, 7/3, 4/3], [0, 1, -7/2], [0, 0, 1]]
See Also
========
rref
"""
result_matlist = copy.deepcopy(matlist)
nrow = len(result_matlist)
for i in range(nrow):
if (result_matlist[i][i] != 1 and result_matlist[i][i] != 0):
rowmul(result_matlist, i, 1/result_matlist[i][i], K)
for j in range(i + 1, nrow):
if (result_matlist[j][i] != 0):
rowadd(result_matlist, j, i, -result_matlist[j][i], K)
return result_matlist
def rref(matlist, K):
"""
Returns the reduced row echelon form of a Matrix.
Examples
========
>>> from sympy.matrices.densesolve import rref
>>> from sympy import QQ
>>> a = [
... [QQ(1), QQ(2), QQ(1)],
... [QQ(-2), QQ(-3), QQ(1)],
... [QQ(3), QQ(5), QQ(0)]]
>>> rref(a, QQ)
[[1, 0, -5], [0, 1, 3], [0, 0, 0]]
See Also
========
row_echelon
"""
result_matlist = copy.deepcopy(matlist)
result_matlist = row_echelon(result_matlist, K)
nrow = len(result_matlist)
for i in range(nrow):
if result_matlist[i][i] == 1:
for j in range(i):
rowadd(result_matlist, j, i, -result_matlist[j][i], K)
return result_matlist
def LU(matlist, K, reverse = 0):
"""
It computes the LU decomposition of a matrix and returns L and U
matrices.
Examples
========
>>> from sympy.matrices.densesolve import LU
>>> from sympy import QQ
>>> a = [
... [QQ(1), QQ(2), QQ(3)],
... [QQ(2), QQ(-4), QQ(6)],
... [QQ(3), QQ(-9), QQ(-3)]]
>>> LU(a, QQ)
([[1, 0, 0], [2, 1, 0], [3, 15/8, 1]], [[1, 2, 3], [0, -8, 0], [0, 0, -12]])
See Also
========
upper_triangle
lower_triangle
"""
nrow = len(matlist)
new_matlist1, new_matlist2 = eye(nrow, K), copy.deepcopy(matlist)
for i in range(nrow):
for j in range(i + 1, nrow):
if (new_matlist2[j][i] != 0):
new_matlist1[j][i] = new_matlist2[j][i]/new_matlist2[i][i]
rowadd(new_matlist2, j, i, -new_matlist2[j][i]/new_matlist2[i][i], K)
return new_matlist1, new_matlist2
def cholesky(matlist, K):
"""
Performs the cholesky decomposition of a Hermitian matrix and
returns L and it's conjugate transpose.
Examples
========
>>> from sympy.matrices.densesolve import cholesky
>>> from sympy import QQ
>>> cholesky([[QQ(25), QQ(15), QQ(-5)], [QQ(15), QQ(18), QQ(0)], [QQ(-5), QQ(0), QQ(11)]], QQ)
([[5, 0, 0], [3, 3, 0], [-1, 1, 3]], [[5, 3, -1], [0, 3, 1], [0, 0, 3]])
See Also
========
cholesky_solve
"""
new_matlist = copy.deepcopy(matlist)
nrow = len(new_matlist)
L = eye(nrow, K)
for i in range(nrow):
for j in range(i + 1):
a = K.zero
for k in range(j):
a += L[i][k]*L[j][k]
if i == j:
L[i][j] = isqrt(new_matlist[i][j] - a)
else:
L[i][j] = (new_matlist[i][j] - a)/L[j][j]
return L, conjugate_transpose(L, K)
def LDL(matlist, K):
"""
Performs the LDL decomposition of a hermitian matrix and returns L, D and
transpose of L. Only applicable to rational entries.
Examples
========
>>> from sympy.matrices.densesolve import LDL
>>> from sympy import QQ
>>> a = [
... [QQ(4), QQ(12), QQ(-16)],
... [QQ(12), QQ(37), QQ(-43)],
... [QQ(-16), QQ(-43), QQ(98)]]
>>> LDL(a, QQ)
([[1, 0, 0], [3, 1, 0], [-4, 5, 1]], [[4, 0, 0], [0, 1, 0], [0, 0, 9]], [[1, 3, -4], [0, 1, 5], [0, 0, 1]])
"""
new_matlist = copy.deepcopy(matlist)
nrow = len(new_matlist)
L, D = eye(nrow, K), eye(nrow, K)
for i in range(nrow):
for j in range(i + 1):
a = K.zero
for k in range(j):
a += L[i][k]*L[j][k]*D[k][k]
if i == j:
D[j][j] = new_matlist[j][j] - a
else:
L[i][j] = (new_matlist[i][j] - a)/D[j][j]
return L, D, conjugate_transpose(L, K)
def upper_triangle(matlist, K):
"""
Transforms a given matrix to an upper triangle matrix by performing
row operations on it.
Examples
========
>>> from sympy.matrices.densesolve import upper_triangle
>>> from sympy import QQ
>>> a = [
... [QQ(4,1), QQ(12,1), QQ(-16,1)],
... [QQ(12,1), QQ(37,1), QQ(-43,1)],
... [QQ(-16,1), QQ(-43,1), QQ(98,1)]]
>>> upper_triangle(a, QQ)
[[4, 12, -16], [0, 1, 5], [0, 0, 9]]
See Also
========
LU
"""
copy_matlist = copy.deepcopy(matlist)
lower_triangle, upper_triangle = LU(copy_matlist, K)
return upper_triangle
def lower_triangle(matlist, K):
"""
Transforms a given matrix to a lower triangle matrix by performing
row operations on it.
Examples
========
>>> from sympy.matrices.densesolve import lower_triangle
>>> from sympy import QQ
>>> a = [
... [QQ(4,1), QQ(12,1), QQ(-16)],
... [QQ(12,1), QQ(37,1), QQ(-43,1)],
... [QQ(-16,1), QQ(-43,1), QQ(98,1)]]
>>> lower_triangle(a, QQ)
[[1, 0, 0], [3, 1, 0], [-4, 5, 1]]
See Also
========
LU
"""
copy_matlist = copy.deepcopy(matlist)
lower_triangle, upper_triangle = LU(copy_matlist, K, reverse = 1)
return lower_triangle
def rref_solve(matlist, variable, constant, K):
"""
Solves a system of equations using reduced row echelon form given
a matrix of coefficients, a vector of variables and a vector of constants.
Examples
========
>>> from sympy.matrices.densesolve import rref_solve
>>> from sympy import QQ
>>> from sympy import Dummy
>>> x, y, z = Dummy('x'), Dummy('y'), Dummy('z')
>>> coefficients = [
... [QQ(25), QQ(15), QQ(-5)],
... [QQ(15), QQ(18), QQ(0)],
... [QQ(-5), QQ(0), QQ(11)]]
>>> constants = [
... [QQ(2)],
... [QQ(3)],
... [QQ(1)]]
>>> variables = [
... [x],
... [y],
... [z]]
>>> rref_solve(coefficients, variables, constants, QQ)
[[-1/225], [23/135], [4/45]]
See Also
========
row_echelon
augment
"""
new_matlist = copy.deepcopy(matlist)
augmented = augment(new_matlist, constant, K)
solution = rref(augmented, K)
return col(solution, -1)
def LU_solve(matlist, variable, constant, K):
"""
Solves a system of equations using LU decomposition given a matrix
of coefficients, a vector of variables and a vector of constants.
Examples
========
>>> from sympy.matrices.densesolve import LU_solve
>>> from sympy import QQ
>>> from sympy import Dummy
>>> x, y, z = Dummy('x'), Dummy('y'), Dummy('z')
>>> coefficients = [
... [QQ(2), QQ(-1), QQ(-2)],
... [QQ(-4), QQ(6), QQ(3)],
... [QQ(-4), QQ(-2), QQ(8)]]
>>> variables = [
... [x],
... [y],
... [z]]
>>> constants = [
... [QQ(-1)],
... [QQ(13)],
... [QQ(-6)]]
>>> LU_solve(coefficients, variables, constants, QQ)
[[2], [3], [1]]
See Also
========
LU
forward_substitution
backward_substitution
"""
new_matlist = copy.deepcopy(matlist)
nrow = len(new_matlist)
L, U = LU(new_matlist, K)
y = [[i] for i in symbols('y:%i' % nrow)]
forward_substitution(L, y, constant, K)
backward_substitution(U, variable, y, K)
return variable
def cholesky_solve(matlist, variable, constant, K):
"""
Solves a system of equations using Cholesky decomposition given
a matrix of coefficients, a vector of variables and a vector of constants.
Examples
========
>>> from sympy.matrices.densesolve import cholesky_solve
>>> from sympy import QQ
>>> from sympy import Dummy
>>> x, y, z = Dummy('x'), Dummy('y'), Dummy('z')
>>> coefficients = [
... [QQ(25), QQ(15), QQ(-5)],
... [QQ(15), QQ(18), QQ(0)],
... [QQ(-5), QQ(0), QQ(11)]]
>>> variables = [
... [x],
... [y],
... [z]]
>>> coefficients = [
... [QQ(2)],
... [QQ(3)],
... [QQ(1)]]
>>> cholesky_solve([[QQ(25), QQ(15), QQ(-5)], [QQ(15), QQ(18), QQ(0)], [QQ(-5), QQ(0), QQ(11)]], [[x], [y], [z]], [[QQ(2)], [QQ(3)], [QQ(1)]], QQ)
[[-1/225], [23/135], [4/45]]
See Also
========
cholesky
forward_substitution
backward_substitution
"""
new_matlist = copy.deepcopy(matlist)
nrow = len(new_matlist)
L, Lstar = cholesky(new_matlist, K)
y = [[i] for i in symbols('y:%i' % nrow)]
forward_substitution(L, y, constant, K)
backward_substitution(Lstar, variable, y, K)
return variable
def forward_substitution(lower_triangle, variable, constant, K):
"""
Performs forward substitution given a lower triangular matrix, a
vector of variables and a vector of constants.
Examples
========
>>> from sympy.matrices.densesolve import forward_substitution
>>> from sympy import QQ
>>> from sympy import Dummy
>>> x, y, z = Dummy('x'), Dummy('y'), Dummy('z')
>>> a = [
... [QQ(1), QQ(0), QQ(0)],
... [QQ(-2), QQ(1), QQ(0)],
... [QQ(-2), QQ(-1), QQ(1)]]
>>> variables = [
... [x],
... [y],
... [z]]
>>> constants = [
... [QQ(-1)],
... [QQ(13)],
... [QQ(-6)]]
>>> forward_substitution(a, variables, constants, QQ)
[[-1], [11], [3]]
See Also
========
LU_solve
cholesky_solve
"""
copy_lower_triangle = copy.deepcopy(lower_triangle)
nrow = len(copy_lower_triangle)
for i in range(nrow):
a = K.zero
for j in range(i):
a += copy_lower_triangle[i][j]*variable[j][0]
variable[i][0] = (constant[i][0] - a)/copy_lower_triangle[i][i]
return variable
def backward_substitution(upper_triangle, variable, constant, K):
"""
Performs forward substitution given a lower triangular matrix,
a vector of variables and a vector constants.
Examples
========
>>> from sympy.matrices.densesolve import backward_substitution
>>> from sympy import QQ
>>> from sympy import Dummy
>>> x, y, z = Dummy('x'), Dummy('y'), Dummy('z')
>>> a = [
... [QQ(2), QQ(-1), QQ(-2)],
... [QQ(0), QQ(4), QQ(-1)],
... [QQ(0), QQ(0), QQ(3)]]
>>> variables = [
... [x],
... [y],
... [z]]
>>> constants = [
... [QQ(-1)],
... [QQ(11)],
... [QQ(3)]]
>>> backward_substitution(a, variables, constants, QQ)
[[2], [3], [1]]
See Also
========
LU_solve
cholesky_solve
"""
copy_upper_triangle = copy.deepcopy(upper_triangle)
nrow = len(copy_upper_triangle)
for i in reversed(range(nrow)):
a = K.zero
for j in reversed(range(i + 1, nrow)):
a += copy_upper_triangle[i][j]*variable[j][0]
variable[i][0] = (constant[i][0] - a)/copy_upper_triangle[i][i]
return variable