Generateurv2/backend/env/lib/python3.10/site-packages/sympy/matrices/repmatrix.py
2022-06-24 17:14:37 +02:00

748 lines
21 KiB
Python

from collections import defaultdict
from operator import index as index_
from sympy.core.compatibility import is_sequence
from sympy.core.expr import Expr
from sympy.core.kind import NumberKind, UndefinedKind
from sympy.core.numbers import Integer, Rational
from sympy.core.sympify import _sympify, SympifyError
from sympy.core.singleton import S
from sympy.polys.domains import ZZ, QQ, EXRAW
from sympy.polys.matrices import DomainMatrix
from sympy.utilities.misc import filldedent
from sympy.utilities.exceptions import SymPyDeprecationWarning
from .common import classof
from .matrices import MatrixBase, MatrixKind, ShapeError
class RepMatrix(MatrixBase):
"""Matrix implementation based on DomainMatrix as an internal representation.
The RepMatrix class is a superclass for Matrix, ImmutableMatrix,
SparseMatrix and ImmutableSparseMatrix which are the main usable matrix
classes in SymPy. Most methods on this class are simply forwarded to
DomainMatrix.
"""
#
# MatrixBase is the common superclass for all of the usable explicit matrix
# classes in SymPy. The idea is that MatrixBase is an abstract class though
# and that subclasses will implement the lower-level methods.
#
# RepMatrix is a subclass of MatrixBase that uses DomainMatrix as an
# internal representation and delegates lower-level methods to
# DomainMatrix. All of SymPy's standard explicit matrix classes subclass
# RepMatrix and so use DomainMatrix internally.
#
# A RepMatrix uses an internal DomainMatrix with the domain set to ZZ, QQ
# or EXRAW. The EXRAW domain is equivalent to the previous implementation
# of Matrix that used Expr for the elements. The ZZ and QQ domains are used
# when applicable just because they are compatible with the previous
# implementation but are much more efficient. Other domains such as QQ[x]
# are not used because they differ from Expr in some way (e.g. automatic
# expansion of powers and products).
#
def __eq__(self, other):
# Skip sympify for mutable matrices...
if not isinstance(other, RepMatrix):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if not isinstance(other, RepMatrix):
return NotImplemented
return self._rep.unify_eq(other._rep)
@classmethod
def _unify_element_sympy(cls, rep, element):
domain = rep.domain
element = _sympify(element)
if domain != EXRAW:
# The domain can only be ZZ, QQ or EXRAW
if element.is_Integer:
new_domain = domain
elif element.is_Rational:
new_domain = QQ
else:
new_domain = EXRAW
# XXX: This converts the domain for all elements in the matrix
# which can be slow. This happens e.g. if __setitem__ changes one
# element to something that does not fit in the domain
if new_domain != domain:
rep = rep.convert_to(new_domain)
domain = new_domain
if domain != EXRAW:
element = new_domain.from_sympy(element)
if domain == EXRAW and not isinstance(element, Expr):
SymPyDeprecationWarning(
feature="non-Expr objects in a Matrix",
useinstead="list of lists, TableForm or some other data structure",
issue=21497,
deprecated_since_version="1.9"
).warn()
return rep, element
@classmethod
def _dod_to_DomainMatrix(cls, rows, cols, dod, types):
if not all(issubclass(typ, Expr) for typ in types):
SymPyDeprecationWarning(
feature="non-Expr objects in a Matrix",
useinstead="list of lists, TableForm or some other data structure",
issue=21497,
deprecated_since_version="1.9"
).warn()
rep = DomainMatrix(dod, (rows, cols), EXRAW)
if all(issubclass(typ, Rational) for typ in types):
if all(issubclass(typ, Integer) for typ in types):
rep = rep.convert_to(ZZ)
else:
rep = rep.convert_to(QQ)
return rep
@classmethod
def _flat_list_to_DomainMatrix(cls, rows, cols, flat_list):
elements_dod = defaultdict(dict)
for n, element in enumerate(flat_list):
if element != 0:
i, j = divmod(n, cols)
elements_dod[i][j] = element
types = set(map(type, flat_list))
rep = cls._dod_to_DomainMatrix(rows, cols, elements_dod, types)
return rep
@classmethod
def _smat_to_DomainMatrix(cls, rows, cols, smat):
elements_dod = defaultdict(dict)
for (i, j), element in smat.items():
if element != 0:
elements_dod[i][j] = element
types = set(map(type, smat.values()))
rep = cls._dod_to_DomainMatrix(rows, cols, elements_dod, types)
return rep
def flat(self):
return self._rep.to_sympy().to_list_flat()
def _eval_tolist(self):
return self._rep.to_sympy().to_list()
def _eval_todok(self):
return self._rep.to_sympy().to_dok()
def _eval_values(self):
return list(self.todok().values())
def copy(self):
return self._fromrep(self._rep.copy())
@property
def kind(self):
domain = self._rep.domain
if domain in (ZZ, QQ):
element_kind = NumberKind
elif domain == EXRAW:
kinds = set(e.kind for e in self.values())
if len(kinds) == 1:
[element_kind] = kinds
else:
element_kind = UndefinedKind
else: # pragma: no cover
raise RuntimeError("Domain should only be ZZ, QQ or EXRAW")
return MatrixKind(element_kind)
def _eval_has(self, *patterns):
# if the matrix has any zeros, see if S.Zero
# has the pattern. If _smat is full length,
# the matrix has no zeros.
zhas = False
dok = self.todok()
if len(dok) != self.rows*self.cols:
zhas = S.Zero.has(*patterns)
return zhas or any(value.has(*patterns) for value in dok.values())
def _eval_is_Identity(self):
if not all(self[i, i] == 1 for i in range(self.rows)):
return False
return len(self.todok()) == self.rows
def _eval_is_symmetric(self, simpfunc):
diff = (self - self.T).applyfunc(simpfunc)
return len(diff.values()) == 0
def _eval_transpose(self):
"""Returns the transposed SparseMatrix of this SparseMatrix.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> a = SparseMatrix(((1, 2), (3, 4)))
>>> a
Matrix([
[1, 2],
[3, 4]])
>>> a.T
Matrix([
[1, 3],
[2, 4]])
"""
return self._fromrep(self._rep.transpose())
def _eval_col_join(self, other):
return self._fromrep(self._rep.vstack(other._rep))
def _eval_row_join(self, other):
return self._fromrep(self._rep.hstack(other._rep))
def _eval_extract(self, rowsList, colsList):
return self._fromrep(self._rep.extract(rowsList, colsList))
def __getitem__(self, key):
return _getitem_RepMatrix(self, key)
@classmethod
def _eval_zeros(cls, rows, cols):
rep = DomainMatrix.zeros((rows, cols), ZZ)
return cls._fromrep(rep)
@classmethod
def _eval_eye(cls, rows, cols):
rep = DomainMatrix.eye((rows, cols), ZZ)
return cls._fromrep(rep)
def _eval_add(self, other):
return classof(self, other)._fromrep(self._rep + other._rep)
def _eval_matrix_mul(self, other):
return classof(self, other)._fromrep(self._rep * other._rep)
def _eval_matrix_mul_elementwise(self, other):
rep = self._rep.mul_elementwise(other._rep)
return classof(self, other)._fromrep(rep)
def _eval_scalar_mul(self, other):
rep, other = self._unify_element_sympy(self._rep, other)
return self._fromrep(rep.scalarmul(other))
def _eval_scalar_rmul(self, other):
rep, other = self._unify_element_sympy(self._rep, other)
return self._fromrep(rep.rscalarmul(other))
def _eval_Abs(self):
return self._fromrep(self._rep.applyfunc(abs))
def _eval_conjugate(self):
rep = self._rep
domain = rep.domain
if domain in (ZZ, QQ):
return self.copy()
else:
return self._fromrep(rep.applyfunc(lambda e: e.conjugate()))
def equals(self, other, failing_expression=False):
"""Applies ``equals`` to corresponding elements of the matrices,
trying to prove that the elements are equivalent, returning True
if they are, False if any pair is not, and None (or the first
failing expression if failing_expression is True) if it cannot
be decided if the expressions are equivalent or not. This is, in
general, an expensive operation.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy.abc import x
>>> A = Matrix([x*(x - 1), 0])
>>> B = Matrix([x**2 - x, 0])
>>> A == B
False
>>> A.simplify() == B.simplify()
True
>>> A.equals(B)
True
>>> A.equals(2)
False
See Also
========
sympy.core.expr.Expr.equals
"""
if self.shape != getattr(other, 'shape', None):
return False
rv = True
for i in range(self.rows):
for j in range(self.cols):
ans = self[i, j].equals(other[i, j], failing_expression)
if ans is False:
return False
elif ans is not True and rv is True:
rv = ans
return rv
class MutableRepMatrix(RepMatrix):
"""Mutable matrix based on DomainMatrix as the internal representation"""
#
# MutableRepMatrix is a subclass of RepMatrix that adds/overrides methods
# to make the instances mutable. MutableRepMatrix is a superclass for both
# MutableDenseMatrix and MutableSparseMatrix.
#
__hash__ = None
is_zero = False
def __new__(cls, *args, **kwargs):
return cls._new(*args, **kwargs)
@classmethod
def _new(cls, *args, copy=True, **kwargs):
if copy is False:
# The input was rows, cols, [list].
# It should be used directly without creating a copy.
if len(args) != 3:
raise TypeError("'copy=False' requires a matrix be initialized as rows,cols,[list]")
rows, cols, flat_list = args
else:
rows, cols, flat_list = cls._handle_creation_inputs(*args, **kwargs)
flat_list = list(flat_list) # create a shallow copy
rep = cls._flat_list_to_DomainMatrix(rows, cols, flat_list)
return cls._fromrep(rep)
@classmethod
def _fromrep(cls, rep):
obj = super().__new__(cls)
obj.rows, obj.cols = rep.shape
obj._rep = rep
return obj
def copy(self):
return self._fromrep(self._rep.copy())
def as_mutable(self):
return self.copy()
def __setitem__(self, key, value):
"""
Examples
========
>>> from sympy import Matrix, I, zeros, ones
>>> m = Matrix(((1, 2+I), (3, 4)))
>>> m
Matrix([
[1, 2 + I],
[3, 4]])
>>> m[1, 0] = 9
>>> m
Matrix([
[1, 2 + I],
[9, 4]])
>>> m[1, 0] = [[0, 1]]
To replace row r you assign to position r*m where m
is the number of columns:
>>> M = zeros(4)
>>> m = M.cols
>>> M[3*m] = ones(1, m)*2; M
Matrix([
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[2, 2, 2, 2]])
And to replace column c you can assign to position c:
>>> M[2] = ones(m, 1)*4; M
Matrix([
[0, 0, 4, 0],
[0, 0, 4, 0],
[0, 0, 4, 0],
[2, 2, 4, 2]])
"""
rv = self._setitem(key, value)
if rv is not None:
i, j, value = rv
self._rep, value = self._unify_element_sympy(self._rep, value)
self._rep.rep.setitem(i, j, value)
def _eval_col_del(self, col):
self._rep = DomainMatrix.hstack(self._rep[:,:col], self._rep[:,col+1:])
self.cols -= 1
def _eval_row_del(self, row):
self._rep = DomainMatrix.vstack(self._rep[:row,:], self._rep[row+1:, :])
self.rows -= 1
def _eval_col_insert(self, col, other):
other = self._new(other)
return self.hstack(self[:,:col], other, self[:,col:])
def _eval_row_insert(self, row, other):
other = self._new(other)
return self.vstack(self[:row,:], other, self[row:,:])
def col_op(self, j, f):
"""In-place operation on col j using two-arg functor whose args are
interpreted as (self[i, j], i).
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.col_op(1, lambda v, i: v + 2*M[i, 0]); M
Matrix([
[1, 2, 0],
[0, 1, 0],
[0, 0, 1]])
See Also
========
col
row_op
"""
for i in range(self.rows):
self[i, j] = f(self[i, j], i)
def col_swap(self, i, j):
"""Swap the two given columns of the matrix in-place.
Examples
========
>>> from sympy.matrices import Matrix
>>> M = Matrix([[1, 0], [1, 0]])
>>> M
Matrix([
[1, 0],
[1, 0]])
>>> M.col_swap(0, 1)
>>> M
Matrix([
[0, 1],
[0, 1]])
See Also
========
col
row_swap
"""
for k in range(0, self.rows):
self[k, i], self[k, j] = self[k, j], self[k, i]
def row_op(self, i, f):
"""In-place operation on row ``i`` using two-arg functor whose args are
interpreted as ``(self[i, j], j)``.
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.row_op(1, lambda v, j: v + 2*M[0, j]); M
Matrix([
[1, 0, 0],
[2, 1, 0],
[0, 0, 1]])
See Also
========
row
zip_row_op
col_op
"""
for j in range(self.cols):
self[i, j] = f(self[i, j], j)
def row_swap(self, i, j):
"""Swap the two given rows of the matrix in-place.
Examples
========
>>> from sympy.matrices import Matrix
>>> M = Matrix([[0, 1], [1, 0]])
>>> M
Matrix([
[0, 1],
[1, 0]])
>>> M.row_swap(0, 1)
>>> M
Matrix([
[1, 0],
[0, 1]])
See Also
========
row
col_swap
"""
for k in range(0, self.cols):
self[i, k], self[j, k] = self[j, k], self[i, k]
def zip_row_op(self, i, k, f):
"""In-place operation on row ``i`` using two-arg functor whose args are
interpreted as ``(self[i, j], self[k, j])``.
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.zip_row_op(1, 0, lambda v, u: v + 2*u); M
Matrix([
[1, 0, 0],
[2, 1, 0],
[0, 0, 1]])
See Also
========
row
row_op
col_op
"""
for j in range(self.cols):
self[i, j] = f(self[i, j], self[k, j])
def copyin_list(self, key, value):
"""Copy in elements from a list.
Parameters
==========
key : slice
The section of this matrix to replace.
value : iterable
The iterable to copy values from.
Examples
========
>>> from sympy.matrices import eye
>>> I = eye(3)
>>> I[:2, 0] = [1, 2] # col
>>> I
Matrix([
[1, 0, 0],
[2, 1, 0],
[0, 0, 1]])
>>> I[1, :2] = [[3, 4]]
>>> I
Matrix([
[1, 0, 0],
[3, 4, 0],
[0, 0, 1]])
See Also
========
copyin_matrix
"""
if not is_sequence(value):
raise TypeError("`value` must be an ordered iterable, not %s." % type(value))
return self.copyin_matrix(key, type(self)(value))
def copyin_matrix(self, key, value):
"""Copy in values from a matrix into the given bounds.
Parameters
==========
key : slice
The section of this matrix to replace.
value : Matrix
The matrix to copy values from.
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> M = Matrix([[0, 1], [2, 3], [4, 5]])
>>> I = eye(3)
>>> I[:3, :2] = M
>>> I
Matrix([
[0, 1, 0],
[2, 3, 0],
[4, 5, 1]])
>>> I[0, 1] = M
>>> I
Matrix([
[0, 0, 1],
[2, 2, 3],
[4, 4, 5]])
See Also
========
copyin_list
"""
rlo, rhi, clo, chi = self.key2bounds(key)
shape = value.shape
dr, dc = rhi - rlo, chi - clo
if shape != (dr, dc):
raise ShapeError(filldedent("The Matrix `value` doesn't have the "
"same dimensions "
"as the in sub-Matrix given by `key`."))
for i in range(value.rows):
for j in range(value.cols):
self[i + rlo, j + clo] = value[i, j]
def fill(self, value):
"""Fill self with the given value.
Notes
=====
Unless many values are going to be deleted (i.e. set to zero)
this will create a matrix that is slower than a dense matrix in
operations.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> M = SparseMatrix.zeros(3); M
Matrix([
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])
>>> M.fill(1); M
Matrix([
[1, 1, 1],
[1, 1, 1],
[1, 1, 1]])
See Also
========
zeros
ones
"""
value = _sympify(value)
if not value:
self._rep = DomainMatrix.zeros(self.shape, EXRAW)
else:
elements_dod = {i: {j: value for j in range(self.cols)} for i in range(self.rows)}
self._rep = DomainMatrix(elements_dod, self.shape, EXRAW)
def _getitem_RepMatrix(self, key):
"""Return portion of self defined by key. If the key involves a slice
then a list will be returned (if key is a single slice) or a matrix
(if key was a tuple involving a slice).
Examples
========
>>> from sympy import Matrix, I
>>> m = Matrix([
... [1, 2 + I],
... [3, 4 ]])
If the key is a tuple that doesn't involve a slice then that element
is returned:
>>> m[1, 0]
3
When a tuple key involves a slice, a matrix is returned. Here, the
first column is selected (all rows, column 0):
>>> m[:, 0]
Matrix([
[1],
[3]])
If the slice is not a tuple then it selects from the underlying
list of elements that are arranged in row order and a list is
returned if a slice is involved:
>>> m[0]
1
>>> m[::2]
[1, 3]
"""
if isinstance(key, tuple):
i, j = key
try:
return self._rep.getitem_sympy(index_(i), index_(j))
except (TypeError, IndexError):
if (isinstance(i, Expr) and not i.is_number) or (isinstance(j, Expr) and not j.is_number):
if ((j < 0) is True) or ((j >= self.shape[1]) is True) or\
((i < 0) is True) or ((i >= self.shape[0]) is True):
raise ValueError("index out of boundary")
from sympy.matrices.expressions.matexpr import MatrixElement
return MatrixElement(self, i, j)
if isinstance(i, slice):
i = range(self.rows)[i]
elif is_sequence(i):
pass
else:
i = [i]
if isinstance(j, slice):
j = range(self.cols)[j]
elif is_sequence(j):
pass
else:
j = [j]
return self.extract(i, j)
else:
# Index/slice like a flattened list
rows, cols = self.shape
# Raise the appropriate exception:
if not rows * cols:
return [][key]
rep = self._rep.rep
domain = rep.domain
is_slice = isinstance(key, slice)
if is_slice:
values = [rep.getitem(*divmod(n, cols)) for n in range(rows * cols)[key]]
else:
values = [rep.getitem(*divmod(index_(key), cols))]
if domain != EXRAW:
to_sympy = domain.to_sympy
values = [to_sympy(val) for val in values]
if is_slice:
return values
else:
return values[0]