561 lines
18 KiB
Python
561 lines
18 KiB
Python
"""Logic for representing operators in state in various bases.
|
|
|
|
TODO:
|
|
|
|
* Get represent working with continuous hilbert spaces.
|
|
* Document default basis functionality.
|
|
"""
|
|
|
|
from sympy import Add, Expr, I, integrate, Mul, Pow
|
|
from sympy.physics.quantum.dagger import Dagger
|
|
from sympy.physics.quantum.commutator import Commutator
|
|
from sympy.physics.quantum.anticommutator import AntiCommutator
|
|
from sympy.physics.quantum.innerproduct import InnerProduct
|
|
from sympy.physics.quantum.qexpr import QExpr
|
|
from sympy.physics.quantum.tensorproduct import TensorProduct
|
|
from sympy.physics.quantum.matrixutils import flatten_scalar
|
|
from sympy.physics.quantum.state import KetBase, BraBase, StateBase
|
|
from sympy.physics.quantum.operator import Operator, OuterProduct
|
|
from sympy.physics.quantum.qapply import qapply
|
|
from sympy.physics.quantum.operatorset import operators_to_state, state_to_operators
|
|
|
|
__all__ = [
|
|
'represent',
|
|
'rep_innerproduct',
|
|
'rep_expectation',
|
|
'integrate_result',
|
|
'get_basis',
|
|
'enumerate_states'
|
|
]
|
|
|
|
#-----------------------------------------------------------------------------
|
|
# Represent
|
|
#-----------------------------------------------------------------------------
|
|
|
|
|
|
def _sympy_to_scalar(e):
|
|
"""Convert from a sympy scalar to a Python scalar."""
|
|
if isinstance(e, Expr):
|
|
if e.is_Integer:
|
|
return int(e)
|
|
elif e.is_Float:
|
|
return float(e)
|
|
elif e.is_Rational:
|
|
return float(e)
|
|
elif e.is_Number or e.is_NumberSymbol or e == I:
|
|
return complex(e)
|
|
raise TypeError('Expected number, got: %r' % e)
|
|
|
|
|
|
def represent(expr, **options):
|
|
"""Represent the quantum expression in the given basis.
|
|
|
|
In quantum mechanics abstract states and operators can be represented in
|
|
various basis sets. Under this operation the follow transforms happen:
|
|
|
|
* Ket -> column vector or function
|
|
* Bra -> row vector of function
|
|
* Operator -> matrix or differential operator
|
|
|
|
This function is the top-level interface for this action.
|
|
|
|
This function walks the sympy expression tree looking for ``QExpr``
|
|
instances that have a ``_represent`` method. This method is then called
|
|
and the object is replaced by the representation returned by this method.
|
|
By default, the ``_represent`` method will dispatch to other methods
|
|
that handle the representation logic for a particular basis set. The
|
|
naming convention for these methods is the following::
|
|
|
|
def _represent_FooBasis(self, e, basis, **options)
|
|
|
|
This function will have the logic for representing instances of its class
|
|
in the basis set having a class named ``FooBasis``.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
expr : Expr
|
|
The expression to represent.
|
|
basis : Operator, basis set
|
|
An object that contains the information about the basis set. If an
|
|
operator is used, the basis is assumed to be the orthonormal
|
|
eigenvectors of that operator. In general though, the basis argument
|
|
can be any object that contains the basis set information.
|
|
options : dict
|
|
Key/value pairs of options that are passed to the underlying method
|
|
that finds the representation. These options can be used to
|
|
control how the representation is done. For example, this is where
|
|
the size of the basis set would be set.
|
|
|
|
Returns
|
|
=======
|
|
|
|
e : Expr
|
|
The SymPy expression of the represented quantum expression.
|
|
|
|
Examples
|
|
========
|
|
|
|
Here we subclass ``Operator`` and ``Ket`` to create the z-spin operator
|
|
and its spin 1/2 up eigenstate. By defining the ``_represent_SzOp``
|
|
method, the ket can be represented in the z-spin basis.
|
|
|
|
>>> from sympy.physics.quantum import Operator, represent, Ket
|
|
>>> from sympy import Matrix
|
|
|
|
>>> class SzUpKet(Ket):
|
|
... def _represent_SzOp(self, basis, **options):
|
|
... return Matrix([1,0])
|
|
...
|
|
>>> class SzOp(Operator):
|
|
... pass
|
|
...
|
|
>>> sz = SzOp('Sz')
|
|
>>> up = SzUpKet('up')
|
|
>>> represent(up, basis=sz)
|
|
Matrix([
|
|
[1],
|
|
[0]])
|
|
|
|
Here we see an example of representations in a continuous
|
|
basis. We see that the result of representing various combinations
|
|
of cartesian position operators and kets give us continuous
|
|
expressions involving DiracDelta functions.
|
|
|
|
>>> from sympy.physics.quantum.cartesian import XOp, XKet, XBra
|
|
>>> X = XOp()
|
|
>>> x = XKet()
|
|
>>> y = XBra('y')
|
|
>>> represent(X*x)
|
|
x*DiracDelta(x - x_2)
|
|
>>> represent(X*x*y)
|
|
x*DiracDelta(x - x_3)*DiracDelta(x_1 - y)
|
|
|
|
"""
|
|
|
|
format = options.get('format', 'sympy')
|
|
if isinstance(expr, QExpr) and not isinstance(expr, OuterProduct):
|
|
options['replace_none'] = False
|
|
temp_basis = get_basis(expr, **options)
|
|
if temp_basis is not None:
|
|
options['basis'] = temp_basis
|
|
try:
|
|
return expr._represent(**options)
|
|
except NotImplementedError as strerr:
|
|
#If no _represent_FOO method exists, map to the
|
|
#appropriate basis state and try
|
|
#the other methods of representation
|
|
options['replace_none'] = True
|
|
|
|
if isinstance(expr, (KetBase, BraBase)):
|
|
try:
|
|
return rep_innerproduct(expr, **options)
|
|
except NotImplementedError:
|
|
raise NotImplementedError(strerr)
|
|
elif isinstance(expr, Operator):
|
|
try:
|
|
return rep_expectation(expr, **options)
|
|
except NotImplementedError:
|
|
raise NotImplementedError(strerr)
|
|
else:
|
|
raise NotImplementedError(strerr)
|
|
elif isinstance(expr, Add):
|
|
result = represent(expr.args[0], **options)
|
|
for args in expr.args[1:]:
|
|
# scipy.sparse doesn't support += so we use plain = here.
|
|
result = result + represent(args, **options)
|
|
return result
|
|
elif isinstance(expr, Pow):
|
|
base, exp = expr.as_base_exp()
|
|
if format == 'numpy' or format == 'scipy.sparse':
|
|
exp = _sympy_to_scalar(exp)
|
|
base = represent(base, **options)
|
|
# scipy.sparse doesn't support negative exponents
|
|
# and warns when inverting a matrix in csr format.
|
|
if format == 'scipy.sparse' and exp < 0:
|
|
from scipy.sparse.linalg import inv
|
|
exp = - exp
|
|
base = inv(base.tocsc()).tocsr()
|
|
return base ** exp
|
|
elif isinstance(expr, TensorProduct):
|
|
new_args = [represent(arg, **options) for arg in expr.args]
|
|
return TensorProduct(*new_args)
|
|
elif isinstance(expr, Dagger):
|
|
return Dagger(represent(expr.args[0], **options))
|
|
elif isinstance(expr, Commutator):
|
|
A = represent(expr.args[0], **options)
|
|
B = represent(expr.args[1], **options)
|
|
return A*B - B*A
|
|
elif isinstance(expr, AntiCommutator):
|
|
A = represent(expr.args[0], **options)
|
|
B = represent(expr.args[1], **options)
|
|
return A*B + B*A
|
|
elif isinstance(expr, InnerProduct):
|
|
return represent(Mul(expr.bra, expr.ket), **options)
|
|
elif not (isinstance(expr, Mul) or isinstance(expr, OuterProduct)):
|
|
# For numpy and scipy.sparse, we can only handle numerical prefactors.
|
|
if format == 'numpy' or format == 'scipy.sparse':
|
|
return _sympy_to_scalar(expr)
|
|
return expr
|
|
|
|
if not (isinstance(expr, Mul) or isinstance(expr, OuterProduct)):
|
|
raise TypeError('Mul expected, got: %r' % expr)
|
|
|
|
if "index" in options:
|
|
options["index"] += 1
|
|
else:
|
|
options["index"] = 1
|
|
|
|
if not "unities" in options:
|
|
options["unities"] = []
|
|
|
|
result = represent(expr.args[-1], **options)
|
|
last_arg = expr.args[-1]
|
|
|
|
for arg in reversed(expr.args[:-1]):
|
|
if isinstance(last_arg, Operator):
|
|
options["index"] += 1
|
|
options["unities"].append(options["index"])
|
|
elif isinstance(last_arg, BraBase) and isinstance(arg, KetBase):
|
|
options["index"] += 1
|
|
elif isinstance(last_arg, KetBase) and isinstance(arg, Operator):
|
|
options["unities"].append(options["index"])
|
|
elif isinstance(last_arg, KetBase) and isinstance(arg, BraBase):
|
|
options["unities"].append(options["index"])
|
|
|
|
result = represent(arg, **options)*result
|
|
last_arg = arg
|
|
|
|
# All three matrix formats create 1 by 1 matrices when inner products of
|
|
# vectors are taken. In these cases, we simply return a scalar.
|
|
result = flatten_scalar(result)
|
|
|
|
result = integrate_result(expr, result, **options)
|
|
|
|
return result
|
|
|
|
|
|
def rep_innerproduct(expr, **options):
|
|
"""
|
|
Returns an innerproduct like representation (e.g. ``<x'|x>``) for the
|
|
given state.
|
|
|
|
Attempts to calculate inner product with a bra from the specified
|
|
basis. Should only be passed an instance of KetBase or BraBase
|
|
|
|
Parameters
|
|
==========
|
|
|
|
expr : KetBase or BraBase
|
|
The expression to be represented
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.physics.quantum.represent import rep_innerproduct
|
|
>>> from sympy.physics.quantum.cartesian import XOp, XKet, PxOp, PxKet
|
|
>>> rep_innerproduct(XKet())
|
|
DiracDelta(x - x_1)
|
|
>>> rep_innerproduct(XKet(), basis=PxOp())
|
|
sqrt(2)*exp(-I*px_1*x/hbar)/(2*sqrt(hbar)*sqrt(pi))
|
|
>>> rep_innerproduct(PxKet(), basis=XOp())
|
|
sqrt(2)*exp(I*px*x_1/hbar)/(2*sqrt(hbar)*sqrt(pi))
|
|
|
|
"""
|
|
|
|
if not isinstance(expr, (KetBase, BraBase)):
|
|
raise TypeError("expr passed is not a Bra or Ket")
|
|
|
|
basis = get_basis(expr, **options)
|
|
|
|
if not isinstance(basis, StateBase):
|
|
raise NotImplementedError("Can't form this representation!")
|
|
|
|
if not "index" in options:
|
|
options["index"] = 1
|
|
|
|
basis_kets = enumerate_states(basis, options["index"], 2)
|
|
|
|
if isinstance(expr, BraBase):
|
|
bra = expr
|
|
ket = (basis_kets[1] if basis_kets[0].dual == expr else basis_kets[0])
|
|
else:
|
|
bra = (basis_kets[1].dual if basis_kets[0]
|
|
== expr else basis_kets[0].dual)
|
|
ket = expr
|
|
|
|
prod = InnerProduct(bra, ket)
|
|
result = prod.doit()
|
|
|
|
format = options.get('format', 'sympy')
|
|
return expr._format_represent(result, format)
|
|
|
|
|
|
def rep_expectation(expr, **options):
|
|
"""
|
|
Returns an ``<x'|A|x>`` type representation for the given operator.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
expr : Operator
|
|
Operator to be represented in the specified basis
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.physics.quantum.cartesian import XOp, PxOp, PxKet
|
|
>>> from sympy.physics.quantum.represent import rep_expectation
|
|
>>> rep_expectation(XOp())
|
|
x_1*DiracDelta(x_1 - x_2)
|
|
>>> rep_expectation(XOp(), basis=PxOp())
|
|
<px_2|*X*|px_1>
|
|
>>> rep_expectation(XOp(), basis=PxKet())
|
|
<px_2|*X*|px_1>
|
|
|
|
"""
|
|
|
|
if not "index" in options:
|
|
options["index"] = 1
|
|
|
|
if not isinstance(expr, Operator):
|
|
raise TypeError("The passed expression is not an operator")
|
|
|
|
basis_state = get_basis(expr, **options)
|
|
|
|
if basis_state is None or not isinstance(basis_state, StateBase):
|
|
raise NotImplementedError("Could not get basis kets for this operator")
|
|
|
|
basis_kets = enumerate_states(basis_state, options["index"], 2)
|
|
|
|
bra = basis_kets[1].dual
|
|
ket = basis_kets[0]
|
|
|
|
return qapply(bra*expr*ket)
|
|
|
|
|
|
def integrate_result(orig_expr, result, **options):
|
|
"""
|
|
Returns the result of integrating over any unities ``(|x><x|)`` in
|
|
the given expression. Intended for integrating over the result of
|
|
representations in continuous bases.
|
|
|
|
This function integrates over any unities that may have been
|
|
inserted into the quantum expression and returns the result.
|
|
It uses the interval of the Hilbert space of the basis state
|
|
passed to it in order to figure out the limits of integration.
|
|
The unities option must be
|
|
specified for this to work.
|
|
|
|
Note: This is mostly used internally by represent(). Examples are
|
|
given merely to show the use cases.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
orig_expr : quantum expression
|
|
The original expression which was to be represented
|
|
|
|
result: Expr
|
|
The resulting representation that we wish to integrate over
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import symbols, DiracDelta
|
|
>>> from sympy.physics.quantum.represent import integrate_result
|
|
>>> from sympy.physics.quantum.cartesian import XOp, XKet
|
|
>>> x_ket = XKet()
|
|
>>> X_op = XOp()
|
|
>>> x, x_1, x_2 = symbols('x, x_1, x_2')
|
|
>>> integrate_result(X_op*x_ket, x*DiracDelta(x-x_1)*DiracDelta(x_1-x_2))
|
|
x*DiracDelta(x - x_1)*DiracDelta(x_1 - x_2)
|
|
>>> integrate_result(X_op*x_ket, x*DiracDelta(x-x_1)*DiracDelta(x_1-x_2),
|
|
... unities=[1])
|
|
x*DiracDelta(x - x_2)
|
|
|
|
"""
|
|
if not isinstance(result, Expr):
|
|
return result
|
|
|
|
options['replace_none'] = True
|
|
if not "basis" in options:
|
|
arg = orig_expr.args[-1]
|
|
options["basis"] = get_basis(arg, **options)
|
|
elif not isinstance(options["basis"], StateBase):
|
|
options["basis"] = get_basis(orig_expr, **options)
|
|
|
|
basis = options.pop("basis", None)
|
|
|
|
if basis is None:
|
|
return result
|
|
|
|
unities = options.pop("unities", [])
|
|
|
|
if len(unities) == 0:
|
|
return result
|
|
|
|
kets = enumerate_states(basis, unities)
|
|
coords = [k.label[0] for k in kets]
|
|
|
|
for coord in coords:
|
|
if coord in result.free_symbols:
|
|
#TODO: Add support for sets of operators
|
|
basis_op = state_to_operators(basis)
|
|
start = basis_op.hilbert_space.interval.start
|
|
end = basis_op.hilbert_space.interval.end
|
|
result = integrate(result, (coord, start, end))
|
|
|
|
return result
|
|
|
|
|
|
def get_basis(expr, *, basis=None, replace_none=True, **options):
|
|
"""
|
|
Returns a basis state instance corresponding to the basis specified in
|
|
options=s. If no basis is specified, the function tries to form a default
|
|
basis state of the given expression.
|
|
|
|
There are three behaviors:
|
|
|
|
1. The basis specified in options is already an instance of StateBase. If
|
|
this is the case, it is simply returned. If the class is specified but
|
|
not an instance, a default instance is returned.
|
|
|
|
2. The basis specified is an operator or set of operators. If this
|
|
is the case, the operator_to_state mapping method is used.
|
|
|
|
3. No basis is specified. If expr is a state, then a default instance of
|
|
its class is returned. If expr is an operator, then it is mapped to the
|
|
corresponding state. If it is neither, then we cannot obtain the basis
|
|
state.
|
|
|
|
If the basis cannot be mapped, then it is not changed.
|
|
|
|
This will be called from within represent, and represent will
|
|
only pass QExpr's.
|
|
|
|
TODO (?): Support for Muls and other types of expressions?
|
|
|
|
Parameters
|
|
==========
|
|
|
|
expr : Operator or StateBase
|
|
Expression whose basis is sought
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.physics.quantum.represent import get_basis
|
|
>>> from sympy.physics.quantum.cartesian import XOp, XKet, PxOp, PxKet
|
|
>>> x = XKet()
|
|
>>> X = XOp()
|
|
>>> get_basis(x)
|
|
|x>
|
|
>>> get_basis(X)
|
|
|x>
|
|
>>> get_basis(x, basis=PxOp())
|
|
|px>
|
|
>>> get_basis(x, basis=PxKet)
|
|
|px>
|
|
|
|
"""
|
|
|
|
if basis is None and not replace_none:
|
|
return None
|
|
|
|
if basis is None:
|
|
if isinstance(expr, KetBase):
|
|
return _make_default(expr.__class__)
|
|
elif isinstance(expr, BraBase):
|
|
return _make_default(expr.dual_class())
|
|
elif isinstance(expr, Operator):
|
|
state_inst = operators_to_state(expr)
|
|
return (state_inst if state_inst is not None else None)
|
|
else:
|
|
return None
|
|
elif (isinstance(basis, Operator) or
|
|
(not isinstance(basis, StateBase) and issubclass(basis, Operator))):
|
|
state = operators_to_state(basis)
|
|
if state is None:
|
|
return None
|
|
elif isinstance(state, StateBase):
|
|
return state
|
|
else:
|
|
return _make_default(state)
|
|
elif isinstance(basis, StateBase):
|
|
return basis
|
|
elif issubclass(basis, StateBase):
|
|
return _make_default(basis)
|
|
else:
|
|
return None
|
|
|
|
|
|
def _make_default(expr):
|
|
# XXX: Catching TypeError like this is a bad way of distinguishing
|
|
# instances from classes. The logic using this function should be
|
|
# rewritten somehow.
|
|
try:
|
|
expr = expr()
|
|
except TypeError:
|
|
return expr
|
|
|
|
return expr
|
|
|
|
|
|
def enumerate_states(*args, **options):
|
|
"""
|
|
Returns instances of the given state with dummy indices appended
|
|
|
|
Operates in two different modes:
|
|
|
|
1. Two arguments are passed to it. The first is the base state which is to
|
|
be indexed, and the second argument is a list of indices to append.
|
|
|
|
2. Three arguments are passed. The first is again the base state to be
|
|
indexed. The second is the start index for counting. The final argument
|
|
is the number of kets you wish to receive.
|
|
|
|
Tries to call state._enumerate_state. If this fails, returns an empty list
|
|
|
|
Parameters
|
|
==========
|
|
|
|
args : list
|
|
See list of operation modes above for explanation
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.physics.quantum.cartesian import XBra, XKet
|
|
>>> from sympy.physics.quantum.represent import enumerate_states
|
|
>>> test = XKet('foo')
|
|
>>> enumerate_states(test, 1, 3)
|
|
[|foo_1>, |foo_2>, |foo_3>]
|
|
>>> test2 = XBra('bar')
|
|
>>> enumerate_states(test2, [4, 5, 10])
|
|
[<bar_4|, <bar_5|, <bar_10|]
|
|
|
|
"""
|
|
|
|
state = args[0]
|
|
|
|
if not (len(args) == 2 or len(args) == 3):
|
|
raise NotImplementedError("Wrong number of arguments!")
|
|
|
|
if not isinstance(state, StateBase):
|
|
raise TypeError("First argument is not a state!")
|
|
|
|
if len(args) == 3:
|
|
num_states = args[2]
|
|
options['start_index'] = args[1]
|
|
else:
|
|
num_states = len(args[1])
|
|
options['index_list'] = args[1]
|
|
|
|
try:
|
|
ret = state._enumerate_state(num_states, **options)
|
|
except NotImplementedError:
|
|
ret = []
|
|
|
|
return ret
|