2602 lines
89 KiB
Python
2602 lines
89 KiB
Python
"""Plotting module for Sympy.
|
|
|
|
A plot is represented by the ``Plot`` class that contains a reference to the
|
|
backend and a list of the data series to be plotted. The data series are
|
|
instances of classes meant to simplify getting points and meshes from sympy
|
|
expressions. ``plot_backends`` is a dictionary with all the backends.
|
|
|
|
This module gives only the essential. For all the fancy stuff use directly
|
|
the backend. You can get the backend wrapper for every plot from the
|
|
``_backend`` attribute. Moreover the data series classes have various useful
|
|
methods like ``get_points``, ``get_meshes``, etc, that may
|
|
be useful if you wish to use another plotting library.
|
|
|
|
Especially if you need publication ready graphs and this module is not enough
|
|
for you - just get the ``_backend`` attribute and add whatever you want
|
|
directly to it. In the case of matplotlib (the common way to graph data in
|
|
python) just copy ``_backend.fig`` which is the figure and ``_backend.ax``
|
|
which is the axis and work on them as you would on any other matplotlib object.
|
|
|
|
Simplicity of code takes much greater importance than performance. Don't use it
|
|
if you care at all about performance. A new backend instance is initialized
|
|
every time you call ``show()`` and the old one is left to the garbage collector.
|
|
"""
|
|
|
|
|
|
from collections.abc import Callable
|
|
|
|
from sympy import sympify, Expr, Tuple, Dummy, Symbol
|
|
from sympy.external import import_module
|
|
from sympy.core.function import arity
|
|
from sympy.utilities.iterables import is_sequence
|
|
from .experimental_lambdify import (vectorized_lambdify, lambdify)
|
|
from sympy.utilities.exceptions import SymPyDeprecationWarning
|
|
|
|
# N.B.
|
|
# When changing the minimum module version for matplotlib, please change
|
|
# the same in the `SymPyDocTestFinder`` in `sympy/testing/runtests.py`
|
|
|
|
# Backend specific imports - textplot
|
|
from sympy.plotting.textplot import textplot
|
|
|
|
# Global variable
|
|
# Set to False when running tests / doctests so that the plots don't show.
|
|
_show = True
|
|
|
|
|
|
def unset_show():
|
|
"""
|
|
Disable show(). For use in the tests.
|
|
"""
|
|
global _show
|
|
_show = False
|
|
|
|
##############################################################################
|
|
# The public interface
|
|
##############################################################################
|
|
|
|
|
|
class Plot:
|
|
"""The central class of the plotting module.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
For interactive work the function ``plot`` is better suited.
|
|
|
|
This class permits the plotting of sympy expressions using numerous
|
|
backends (matplotlib, textplot, the old pyglet module for sympy, Google
|
|
charts api, etc).
|
|
|
|
The figure can contain an arbitrary number of plots of sympy expressions,
|
|
lists of coordinates of points, etc. Plot has a private attribute _series that
|
|
contains all data series to be plotted (expressions for lines or surfaces,
|
|
lists of points, etc (all subclasses of BaseSeries)). Those data series are
|
|
instances of classes not imported by ``from sympy import *``.
|
|
|
|
The customization of the figure is on two levels. Global options that
|
|
concern the figure as a whole (eg title, xlabel, scale, etc) and
|
|
per-data series options (eg name) and aesthetics (eg. color, point shape,
|
|
line type, etc.).
|
|
|
|
The difference between options and aesthetics is that an aesthetic can be
|
|
a function of the coordinates (or parameters in a parametric plot). The
|
|
supported values for an aesthetic are:
|
|
- None (the backend uses default values)
|
|
- a constant
|
|
- a function of one variable (the first coordinate or parameter)
|
|
- a function of two variables (the first and second coordinate or
|
|
parameters)
|
|
- a function of three variables (only in nonparametric 3D plots)
|
|
Their implementation depends on the backend so they may not work in some
|
|
backends.
|
|
|
|
If the plot is parametric and the arity of the aesthetic function permits
|
|
it the aesthetic is calculated over parameters and not over coordinates.
|
|
If the arity does not permit calculation over parameters the calculation is
|
|
done over coordinates.
|
|
|
|
Only cartesian coordinates are supported for the moment, but you can use
|
|
the parametric plots to plot in polar, spherical and cylindrical
|
|
coordinates.
|
|
|
|
The arguments for the constructor Plot must be subclasses of BaseSeries.
|
|
|
|
Any global option can be specified as a keyword argument.
|
|
|
|
The global options for a figure are:
|
|
|
|
- title : str
|
|
- xlabel : str
|
|
- ylabel : str
|
|
- zlabel : str
|
|
- legend : bool
|
|
- xscale : {'linear', 'log'}
|
|
- yscale : {'linear', 'log'}
|
|
- axis : bool
|
|
- axis_center : tuple of two floats or {'center', 'auto'}
|
|
- xlim : tuple of two floats
|
|
- ylim : tuple of two floats
|
|
- aspect_ratio : tuple of two floats or {'auto'}
|
|
- autoscale : bool
|
|
- margin : float in [0, 1]
|
|
- backend : {'default', 'matplotlib', 'text'} or a subclass of BaseBackend
|
|
- size : optional tuple of two floats, (width, height); default: None
|
|
|
|
The per data series options and aesthetics are:
|
|
There are none in the base series. See below for options for subclasses.
|
|
|
|
Some data series support additional aesthetics or options:
|
|
|
|
ListSeries, LineOver1DRangeSeries, Parametric2DLineSeries,
|
|
Parametric3DLineSeries support the following:
|
|
|
|
Aesthetics:
|
|
|
|
- line_color : string, or float, or function, optional
|
|
Specifies the color for the plot, which depends on the backend being
|
|
used.
|
|
|
|
For example, if ``MatplotlibBackend`` is being used, then
|
|
Matplotlib string colors are acceptable ("red", "r", "cyan", "c", ...).
|
|
Alternatively, we can use a float number `0 < color < 1` wrapped in a
|
|
string (for example, `line_color="0.5"`) to specify grayscale colors.
|
|
Alternatively, We can specify a function returning a single
|
|
float value: this will be used to apply a color-loop (for example,
|
|
`line_color=lambda x: math.cos(x)`).
|
|
|
|
Note that by setting line_color, it would be applied simultaneously
|
|
to all the series.
|
|
|
|
options:
|
|
|
|
- label : str
|
|
- steps : bool
|
|
- integers_only : bool
|
|
|
|
SurfaceOver2DRangeSeries, ParametricSurfaceSeries support the following:
|
|
|
|
aesthetics:
|
|
|
|
- surface_color : function which returns a float.
|
|
"""
|
|
|
|
def __init__(self, *args,
|
|
title=None, xlabel=None, ylabel=None, zlabel=None, aspect_ratio='auto',
|
|
xlim=None, ylim=None, axis_center='auto', axis=True,
|
|
xscale='linear', yscale='linear', legend=False, autoscale=True,
|
|
margin=0, annotations=None, markers=None, rectangles=None,
|
|
fill=None, backend='default', size=None, **kwargs):
|
|
super().__init__()
|
|
|
|
# Options for the graph as a whole.
|
|
# The possible values for each option are described in the docstring of
|
|
# Plot. They are based purely on convention, no checking is done.
|
|
self.title = title
|
|
self.xlabel = xlabel
|
|
self.ylabel = ylabel
|
|
self.zlabel = zlabel
|
|
self.aspect_ratio = aspect_ratio
|
|
self.axis_center = axis_center
|
|
self.axis = axis
|
|
self.xscale = xscale
|
|
self.yscale = yscale
|
|
self.legend = legend
|
|
self.autoscale = autoscale
|
|
self.margin = margin
|
|
self.annotations = annotations
|
|
self.markers = markers
|
|
self.rectangles = rectangles
|
|
self.fill = fill
|
|
|
|
# Contains the data objects to be plotted. The backend should be smart
|
|
# enough to iterate over this list.
|
|
self._series = []
|
|
self._series.extend(args)
|
|
|
|
# The backend type. On every show() a new backend instance is created
|
|
# in self._backend which is tightly coupled to the Plot instance
|
|
# (thanks to the parent attribute of the backend).
|
|
if isinstance(backend, str):
|
|
self.backend = plot_backends[backend]
|
|
elif (type(backend) == type) and issubclass(backend, BaseBackend):
|
|
self.backend = backend
|
|
else:
|
|
raise TypeError(
|
|
"backend must be either a string or a subclass of BaseBackend")
|
|
|
|
is_real = \
|
|
lambda lim: all(getattr(i, 'is_real', True) for i in lim)
|
|
is_finite = \
|
|
lambda lim: all(getattr(i, 'is_finite', True) for i in lim)
|
|
|
|
# reduce code repetition
|
|
def check_and_set(t_name, t):
|
|
if t:
|
|
if not is_real(t):
|
|
raise ValueError(
|
|
"All numbers from {}={} must be real".format(t_name, t))
|
|
if not is_finite(t):
|
|
raise ValueError(
|
|
"All numbers from {}={} must be finite".format(t_name, t))
|
|
setattr(self, t_name, (float(t[0]), float(t[1])))
|
|
|
|
self.xlim = None
|
|
check_and_set("xlim", xlim)
|
|
self.ylim = None
|
|
check_and_set("ylim", ylim)
|
|
self.size = None
|
|
check_and_set("size", size)
|
|
|
|
|
|
def show(self):
|
|
# TODO move this to the backend (also for save)
|
|
if hasattr(self, '_backend'):
|
|
self._backend.close()
|
|
self._backend = self.backend(self)
|
|
self._backend.show()
|
|
|
|
def save(self, path):
|
|
if hasattr(self, '_backend'):
|
|
self._backend.close()
|
|
self._backend = self.backend(self)
|
|
self._backend.save(path)
|
|
|
|
def __str__(self):
|
|
series_strs = [('[%d]: ' % i) + str(s)
|
|
for i, s in enumerate(self._series)]
|
|
return 'Plot object containing:\n' + '\n'.join(series_strs)
|
|
|
|
def __getitem__(self, index):
|
|
return self._series[index]
|
|
|
|
def __setitem__(self, index, *args):
|
|
if len(args) == 1 and isinstance(args[0], BaseSeries):
|
|
self._series[index] = args
|
|
|
|
def __delitem__(self, index):
|
|
del self._series[index]
|
|
|
|
def append(self, arg):
|
|
"""Adds an element from a plot's series to an existing plot.
|
|
|
|
Examples
|
|
========
|
|
|
|
Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the
|
|
second plot's first series object to the first, use the
|
|
``append`` method, like so:
|
|
|
|
.. plot::
|
|
:format: doctest
|
|
:include-source: True
|
|
|
|
>>> from sympy import symbols
|
|
>>> from sympy.plotting import plot
|
|
>>> x = symbols('x')
|
|
>>> p1 = plot(x*x, show=False)
|
|
>>> p2 = plot(x, show=False)
|
|
>>> p1.append(p2[0])
|
|
>>> p1
|
|
Plot object containing:
|
|
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
|
|
[1]: cartesian line: x for x over (-10.0, 10.0)
|
|
>>> p1.show()
|
|
|
|
See Also
|
|
========
|
|
|
|
extend
|
|
|
|
"""
|
|
if isinstance(arg, BaseSeries):
|
|
self._series.append(arg)
|
|
else:
|
|
raise TypeError('Must specify element of plot to append.')
|
|
|
|
def extend(self, arg):
|
|
"""Adds all series from another plot.
|
|
|
|
Examples
|
|
========
|
|
|
|
Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the
|
|
second plot to the first, use the ``extend`` method, like so:
|
|
|
|
.. plot::
|
|
:format: doctest
|
|
:include-source: True
|
|
|
|
>>> from sympy import symbols
|
|
>>> from sympy.plotting import plot
|
|
>>> x = symbols('x')
|
|
>>> p1 = plot(x**2, show=False)
|
|
>>> p2 = plot(x, -x, show=False)
|
|
>>> p1.extend(p2)
|
|
>>> p1
|
|
Plot object containing:
|
|
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
|
|
[1]: cartesian line: x for x over (-10.0, 10.0)
|
|
[2]: cartesian line: -x for x over (-10.0, 10.0)
|
|
>>> p1.show()
|
|
|
|
"""
|
|
if isinstance(arg, Plot):
|
|
self._series.extend(arg._series)
|
|
elif is_sequence(arg):
|
|
self._series.extend(arg)
|
|
else:
|
|
raise TypeError('Expecting Plot or sequence of BaseSeries')
|
|
|
|
|
|
class PlotGrid:
|
|
"""This class helps to plot subplots from already created sympy plots
|
|
in a single figure.
|
|
|
|
Examples
|
|
========
|
|
|
|
.. plot::
|
|
:context: close-figs
|
|
:format: doctest
|
|
:include-source: True
|
|
|
|
>>> from sympy import symbols
|
|
>>> from sympy.plotting import plot, plot3d, PlotGrid
|
|
>>> x, y = symbols('x, y')
|
|
>>> p1 = plot(x, x**2, x**3, (x, -5, 5))
|
|
>>> p2 = plot((x**2, (x, -6, 6)), (x, (x, -5, 5)))
|
|
>>> p3 = plot(x**3, (x, -5, 5))
|
|
>>> p4 = plot3d(x*y, (x, -5, 5), (y, -5, 5))
|
|
|
|
Plotting vertically in a single line:
|
|
|
|
.. plot::
|
|
:context: close-figs
|
|
:format: doctest
|
|
:include-source: True
|
|
|
|
>>> PlotGrid(2, 1 , p1, p2)
|
|
PlotGrid object containing:
|
|
Plot[0]:Plot object containing:
|
|
[0]: cartesian line: x for x over (-5.0, 5.0)
|
|
[1]: cartesian line: x**2 for x over (-5.0, 5.0)
|
|
[2]: cartesian line: x**3 for x over (-5.0, 5.0)
|
|
Plot[1]:Plot object containing:
|
|
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
|
|
[1]: cartesian line: x for x over (-5.0, 5.0)
|
|
|
|
Plotting horizontally in a single line:
|
|
|
|
.. plot::
|
|
:context: close-figs
|
|
:format: doctest
|
|
:include-source: True
|
|
|
|
>>> PlotGrid(1, 3 , p2, p3, p4)
|
|
PlotGrid object containing:
|
|
Plot[0]:Plot object containing:
|
|
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
|
|
[1]: cartesian line: x for x over (-5.0, 5.0)
|
|
Plot[1]:Plot object containing:
|
|
[0]: cartesian line: x**3 for x over (-5.0, 5.0)
|
|
Plot[2]:Plot object containing:
|
|
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
|
|
|
|
Plotting in a grid form:
|
|
|
|
.. plot::
|
|
:context: close-figs
|
|
:format: doctest
|
|
:include-source: True
|
|
|
|
>>> PlotGrid(2, 2, p1, p2 ,p3, p4)
|
|
PlotGrid object containing:
|
|
Plot[0]:Plot object containing:
|
|
[0]: cartesian line: x for x over (-5.0, 5.0)
|
|
[1]: cartesian line: x**2 for x over (-5.0, 5.0)
|
|
[2]: cartesian line: x**3 for x over (-5.0, 5.0)
|
|
Plot[1]:Plot object containing:
|
|
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
|
|
[1]: cartesian line: x for x over (-5.0, 5.0)
|
|
Plot[2]:Plot object containing:
|
|
[0]: cartesian line: x**3 for x over (-5.0, 5.0)
|
|
Plot[3]:Plot object containing:
|
|
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
|
|
|
|
"""
|
|
def __init__(self, nrows, ncolumns, *args, show=True, size=None, **kwargs):
|
|
"""
|
|
Parameters
|
|
==========
|
|
|
|
nrows :
|
|
The number of rows that should be in the grid of the
|
|
required subplot.
|
|
ncolumns :
|
|
The number of columns that should be in the grid
|
|
of the required subplot.
|
|
|
|
nrows and ncolumns together define the required grid.
|
|
|
|
Arguments
|
|
=========
|
|
|
|
A list of predefined plot objects entered in a row-wise sequence
|
|
i.e. plot objects which are to be in the top row of the required
|
|
grid are written first, then the second row objects and so on
|
|
|
|
Keyword arguments
|
|
=================
|
|
|
|
show : Boolean
|
|
The default value is set to ``True``. Set show to ``False`` and
|
|
the function will not display the subplot. The returned instance
|
|
of the ``PlotGrid`` class can then be used to save or display the
|
|
plot by calling the ``save()`` and ``show()`` methods
|
|
respectively.
|
|
size : (float, float), optional
|
|
A tuple in the form (width, height) in inches to specify the size of
|
|
the overall figure. The default value is set to ``None``, meaning
|
|
the size will be set by the default backend.
|
|
"""
|
|
self.nrows = nrows
|
|
self.ncolumns = ncolumns
|
|
self._series = []
|
|
self.args = args
|
|
for arg in args:
|
|
self._series.append(arg._series)
|
|
self.backend = DefaultBackend
|
|
self.size = size
|
|
if show:
|
|
self.show()
|
|
|
|
def show(self):
|
|
if hasattr(self, '_backend'):
|
|
self._backend.close()
|
|
self._backend = self.backend(self)
|
|
self._backend.show()
|
|
|
|
def save(self, path):
|
|
if hasattr(self, '_backend'):
|
|
self._backend.close()
|
|
self._backend = self.backend(self)
|
|
self._backend.save(path)
|
|
|
|
def __str__(self):
|
|
plot_strs = [('Plot[%d]:' % i) + str(plot)
|
|
for i, plot in enumerate(self.args)]
|
|
|
|
return 'PlotGrid object containing:\n' + '\n'.join(plot_strs)
|
|
|
|
|
|
##############################################################################
|
|
# Data Series
|
|
##############################################################################
|
|
#TODO more general way to calculate aesthetics (see get_color_array)
|
|
|
|
### The base class for all series
|
|
class BaseSeries:
|
|
"""Base class for the data objects containing stuff to be plotted.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
The backend should check if it supports the data series that it's given.
|
|
(eg TextBackend supports only LineOver1DRange).
|
|
It's the backend responsibility to know how to use the class of
|
|
data series that it's given.
|
|
|
|
Some data series classes are grouped (using a class attribute like is_2Dline)
|
|
according to the api they present (based only on convention). The backend is
|
|
not obliged to use that api (eg. The LineOver1DRange belongs to the
|
|
is_2Dline group and presents the get_points method, but the
|
|
TextBackend does not use the get_points method).
|
|
"""
|
|
|
|
# Some flags follow. The rationale for using flags instead of checking base
|
|
# classes is that setting multiple flags is simpler than multiple
|
|
# inheritance.
|
|
|
|
is_2Dline = False
|
|
# Some of the backends expect:
|
|
# - get_points returning 1D np.arrays list_x, list_y
|
|
# - get_color_array returning 1D np.array (done in Line2DBaseSeries)
|
|
# with the colors calculated at the points from get_points
|
|
|
|
is_3Dline = False
|
|
# Some of the backends expect:
|
|
# - get_points returning 1D np.arrays list_x, list_y, list_y
|
|
# - get_color_array returning 1D np.array (done in Line2DBaseSeries)
|
|
# with the colors calculated at the points from get_points
|
|
|
|
is_3Dsurface = False
|
|
# Some of the backends expect:
|
|
# - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays)
|
|
# - get_points an alias for get_meshes
|
|
|
|
is_contour = False
|
|
# Some of the backends expect:
|
|
# - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays)
|
|
# - get_points an alias for get_meshes
|
|
|
|
is_implicit = False
|
|
# Some of the backends expect:
|
|
# - get_meshes returning mesh_x (1D array), mesh_y(1D array,
|
|
# mesh_z (2D np.arrays)
|
|
# - get_points an alias for get_meshes
|
|
# Different from is_contour as the colormap in backend will be
|
|
# different
|
|
|
|
is_parametric = False
|
|
# The calculation of aesthetics expects:
|
|
# - get_parameter_points returning one or two np.arrays (1D or 2D)
|
|
# used for calculation aesthetics
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
@property
|
|
def is_3D(self):
|
|
flags3D = [
|
|
self.is_3Dline,
|
|
self.is_3Dsurface
|
|
]
|
|
return any(flags3D)
|
|
|
|
@property
|
|
def is_line(self):
|
|
flagslines = [
|
|
self.is_2Dline,
|
|
self.is_3Dline
|
|
]
|
|
return any(flagslines)
|
|
|
|
|
|
### 2D lines
|
|
class Line2DBaseSeries(BaseSeries):
|
|
"""A base class for 2D lines.
|
|
|
|
- adding the label, steps and only_integers options
|
|
- making is_2Dline true
|
|
- defining get_segments and get_color_array
|
|
"""
|
|
|
|
is_2Dline = True
|
|
|
|
_dim = 2
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.label = None
|
|
self.steps = False
|
|
self.only_integers = False
|
|
self.line_color = None
|
|
|
|
def get_data(self):
|
|
""" Return lists of coordinates for plotting the line.
|
|
|
|
Returns
|
|
=======
|
|
x: list
|
|
List of x-coordinates
|
|
|
|
y: list
|
|
List of y-coordinates
|
|
|
|
y: list
|
|
List of z-coordinates in case of Parametric3DLineSeries
|
|
"""
|
|
np = import_module('numpy')
|
|
points = self.get_points()
|
|
if self.steps is True:
|
|
if len(points) == 2:
|
|
x = np.array((points[0], points[0])).T.flatten()[1:]
|
|
y = np.array((points[1], points[1])).T.flatten()[:-1]
|
|
points = (x, y)
|
|
else:
|
|
x = np.repeat(points[0], 3)[2:]
|
|
y = np.repeat(points[1], 3)[:-2]
|
|
z = np.repeat(points[2], 3)[1:-1]
|
|
points = (x, y, z)
|
|
return points
|
|
|
|
def get_segments(self):
|
|
SymPyDeprecationWarning(
|
|
feature="get_segments",
|
|
issue=21329,
|
|
deprecated_since_version="1.9",
|
|
useinstead="MatplotlibBackend.get_segments").warn()
|
|
|
|
np = import_module('numpy')
|
|
points = type(self).get_data(self)
|
|
points = np.ma.array(points).T.reshape(-1, 1, self._dim)
|
|
return np.ma.concatenate([points[:-1], points[1:]], axis=1)
|
|
|
|
def get_color_array(self):
|
|
np = import_module('numpy')
|
|
c = self.line_color
|
|
if hasattr(c, '__call__'):
|
|
f = np.vectorize(c)
|
|
nargs = arity(c)
|
|
if nargs == 1 and self.is_parametric:
|
|
x = self.get_parameter_points()
|
|
return f(centers_of_segments(x))
|
|
else:
|
|
variables = list(map(centers_of_segments, self.get_points()))
|
|
if nargs == 1:
|
|
return f(variables[0])
|
|
elif nargs == 2:
|
|
return f(*variables[:2])
|
|
else: # only if the line is 3D (otherwise raises an error)
|
|
return f(*variables)
|
|
else:
|
|
return c*np.ones(self.nb_of_points)
|
|
|
|
|
|
class List2DSeries(Line2DBaseSeries):
|
|
"""Representation for a line consisting of list of points."""
|
|
|
|
def __init__(self, list_x, list_y):
|
|
np = import_module('numpy')
|
|
super().__init__()
|
|
self.list_x = np.array(list_x)
|
|
self.list_y = np.array(list_y)
|
|
self.label = 'list'
|
|
|
|
def __str__(self):
|
|
return 'list plot'
|
|
|
|
def get_points(self):
|
|
return (self.list_x, self.list_y)
|
|
|
|
|
|
class LineOver1DRangeSeries(Line2DBaseSeries):
|
|
"""Representation for a line consisting of a SymPy expression over a range."""
|
|
|
|
def __init__(self, expr, var_start_end, **kwargs):
|
|
super().__init__()
|
|
self.expr = sympify(expr)
|
|
self.label = kwargs.get('label', None) or str(self.expr)
|
|
self.var = sympify(var_start_end[0])
|
|
self.start = float(var_start_end[1])
|
|
self.end = float(var_start_end[2])
|
|
self.nb_of_points = kwargs.get('nb_of_points', 300)
|
|
self.adaptive = kwargs.get('adaptive', True)
|
|
self.depth = kwargs.get('depth', 12)
|
|
self.line_color = kwargs.get('line_color', None)
|
|
self.xscale = kwargs.get('xscale', 'linear')
|
|
|
|
def __str__(self):
|
|
return 'cartesian line: %s for %s over %s' % (
|
|
str(self.expr), str(self.var), str((self.start, self.end)))
|
|
|
|
def get_points(self):
|
|
""" Return lists of coordinates for plotting. Depending on the
|
|
`adaptive` option, this function will either use an adaptive algorithm
|
|
or it will uniformly sample the expression over the provided range.
|
|
|
|
Returns
|
|
=======
|
|
x: list
|
|
List of x-coordinates
|
|
|
|
y: list
|
|
List of y-coordinates
|
|
|
|
|
|
Explanation
|
|
===========
|
|
|
|
The adaptive sampling is done by recursively checking if three
|
|
points are almost collinear. If they are not collinear, then more
|
|
points are added between those points.
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] Adaptive polygonal approximation of parametric curves,
|
|
Luiz Henrique de Figueiredo.
|
|
|
|
"""
|
|
if self.only_integers or not self.adaptive:
|
|
return self._uniform_sampling()
|
|
else:
|
|
f = lambdify([self.var], self.expr)
|
|
x_coords = []
|
|
y_coords = []
|
|
np = import_module('numpy')
|
|
def sample(p, q, depth):
|
|
""" Samples recursively if three points are almost collinear.
|
|
For depth < 6, points are added irrespective of whether they
|
|
satisfy the collinearity condition or not. The maximum depth
|
|
allowed is 12.
|
|
"""
|
|
# Randomly sample to avoid aliasing.
|
|
random = 0.45 + np.random.rand() * 0.1
|
|
if self.xscale == 'log':
|
|
xnew = 10**(np.log10(p[0]) + random * (np.log10(q[0]) -
|
|
np.log10(p[0])))
|
|
else:
|
|
xnew = p[0] + random * (q[0] - p[0])
|
|
ynew = f(xnew)
|
|
new_point = np.array([xnew, ynew])
|
|
|
|
# Maximum depth
|
|
if depth > self.depth:
|
|
x_coords.append(q[0])
|
|
y_coords.append(q[1])
|
|
|
|
# Sample irrespective of whether the line is flat till the
|
|
# depth of 6. We are not using linspace to avoid aliasing.
|
|
elif depth < 6:
|
|
sample(p, new_point, depth + 1)
|
|
sample(new_point, q, depth + 1)
|
|
|
|
# Sample ten points if complex values are encountered
|
|
# at both ends. If there is a real value in between, then
|
|
# sample those points further.
|
|
elif p[1] is None and q[1] is None:
|
|
if self.xscale == 'log':
|
|
xarray = np.logspace(p[0], q[0], 10)
|
|
else:
|
|
xarray = np.linspace(p[0], q[0], 10)
|
|
yarray = list(map(f, xarray))
|
|
if any(y is not None for y in yarray):
|
|
for i in range(len(yarray) - 1):
|
|
if yarray[i] is not None or yarray[i + 1] is not None:
|
|
sample([xarray[i], yarray[i]],
|
|
[xarray[i + 1], yarray[i + 1]], depth + 1)
|
|
|
|
# Sample further if one of the end points in None (i.e. a
|
|
# complex value) or the three points are not almost collinear.
|
|
elif (p[1] is None or q[1] is None or new_point[1] is None
|
|
or not flat(p, new_point, q)):
|
|
sample(p, new_point, depth + 1)
|
|
sample(new_point, q, depth + 1)
|
|
else:
|
|
x_coords.append(q[0])
|
|
y_coords.append(q[1])
|
|
|
|
f_start = f(self.start)
|
|
f_end = f(self.end)
|
|
x_coords.append(self.start)
|
|
y_coords.append(f_start)
|
|
sample(np.array([self.start, f_start]),
|
|
np.array([self.end, f_end]), 0)
|
|
|
|
return (x_coords, y_coords)
|
|
|
|
def _uniform_sampling(self):
|
|
np = import_module('numpy')
|
|
if self.only_integers is True:
|
|
if self.xscale == 'log':
|
|
list_x = np.logspace(int(self.start), int(self.end),
|
|
num=int(self.end) - int(self.start) + 1)
|
|
else:
|
|
list_x = np.linspace(int(self.start), int(self.end),
|
|
num=int(self.end) - int(self.start) + 1)
|
|
else:
|
|
if self.xscale == 'log':
|
|
list_x = np.logspace(self.start, self.end, num=self.nb_of_points)
|
|
else:
|
|
list_x = np.linspace(self.start, self.end, num=self.nb_of_points)
|
|
f = vectorized_lambdify([self.var], self.expr)
|
|
list_y = f(list_x)
|
|
return (list_x, list_y)
|
|
|
|
class Parametric2DLineSeries(Line2DBaseSeries):
|
|
"""Representation for a line consisting of two parametric sympy expressions
|
|
over a range."""
|
|
|
|
is_parametric = True
|
|
|
|
def __init__(self, expr_x, expr_y, var_start_end, **kwargs):
|
|
super().__init__()
|
|
self.expr_x = sympify(expr_x)
|
|
self.expr_y = sympify(expr_y)
|
|
self.label = kwargs.get('label', None) or \
|
|
"(%s, %s)" % (str(self.expr_x), str(self.expr_y))
|
|
self.var = sympify(var_start_end[0])
|
|
self.start = float(var_start_end[1])
|
|
self.end = float(var_start_end[2])
|
|
self.nb_of_points = kwargs.get('nb_of_points', 300)
|
|
self.adaptive = kwargs.get('adaptive', True)
|
|
self.depth = kwargs.get('depth', 12)
|
|
self.line_color = kwargs.get('line_color', None)
|
|
|
|
def __str__(self):
|
|
return 'parametric cartesian line: (%s, %s) for %s over %s' % (
|
|
str(self.expr_x), str(self.expr_y), str(self.var),
|
|
str((self.start, self.end)))
|
|
|
|
def get_parameter_points(self):
|
|
np = import_module('numpy')
|
|
return np.linspace(self.start, self.end, num=self.nb_of_points)
|
|
|
|
def _uniform_sampling(self):
|
|
param = self.get_parameter_points()
|
|
fx = vectorized_lambdify([self.var], self.expr_x)
|
|
fy = vectorized_lambdify([self.var], self.expr_y)
|
|
list_x = fx(param)
|
|
list_y = fy(param)
|
|
return (list_x, list_y)
|
|
|
|
def get_points(self):
|
|
""" Return lists of coordinates for plotting. Depending on the
|
|
`adaptive` option, this function will either use an adaptive algorithm
|
|
or it will uniformly sample the expression over the provided range.
|
|
|
|
Returns
|
|
=======
|
|
x: list
|
|
List of x-coordinates
|
|
|
|
y: list
|
|
List of y-coordinates
|
|
|
|
|
|
Explanation
|
|
===========
|
|
|
|
The adaptive sampling is done by recursively checking if three
|
|
points are almost collinear. If they are not collinear, then more
|
|
points are added between those points.
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] Adaptive polygonal approximation of parametric curves,
|
|
Luiz Henrique de Figueiredo.
|
|
|
|
"""
|
|
if not self.adaptive:
|
|
return self._uniform_sampling()
|
|
|
|
f_x = lambdify([self.var], self.expr_x)
|
|
f_y = lambdify([self.var], self.expr_y)
|
|
x_coords = []
|
|
y_coords = []
|
|
|
|
def sample(param_p, param_q, p, q, depth):
|
|
""" Samples recursively if three points are almost collinear.
|
|
For depth < 6, points are added irrespective of whether they
|
|
satisfy the collinearity condition or not. The maximum depth
|
|
allowed is 12.
|
|
"""
|
|
# Randomly sample to avoid aliasing.
|
|
np = import_module('numpy')
|
|
random = 0.45 + np.random.rand() * 0.1
|
|
param_new = param_p + random * (param_q - param_p)
|
|
xnew = f_x(param_new)
|
|
ynew = f_y(param_new)
|
|
new_point = np.array([xnew, ynew])
|
|
|
|
# Maximum depth
|
|
if depth > self.depth:
|
|
x_coords.append(q[0])
|
|
y_coords.append(q[1])
|
|
|
|
# Sample irrespective of whether the line is flat till the
|
|
# depth of 6. We are not using linspace to avoid aliasing.
|
|
elif depth < 6:
|
|
sample(param_p, param_new, p, new_point, depth + 1)
|
|
sample(param_new, param_q, new_point, q, depth + 1)
|
|
|
|
# Sample ten points if complex values are encountered
|
|
# at both ends. If there is a real value in between, then
|
|
# sample those points further.
|
|
elif ((p[0] is None and q[1] is None) or
|
|
(p[1] is None and q[1] is None)):
|
|
param_array = np.linspace(param_p, param_q, 10)
|
|
x_array = list(map(f_x, param_array))
|
|
y_array = list(map(f_y, param_array))
|
|
if any(x is not None and y is not None
|
|
for x, y in zip(x_array, y_array)):
|
|
for i in range(len(y_array) - 1):
|
|
if ((x_array[i] is not None and y_array[i] is not None) or
|
|
(x_array[i + 1] is not None and y_array[i + 1] is not None)):
|
|
point_a = [x_array[i], y_array[i]]
|
|
point_b = [x_array[i + 1], y_array[i + 1]]
|
|
sample(param_array[i], param_array[i], point_a,
|
|
point_b, depth + 1)
|
|
|
|
# Sample further if one of the end points in None (i.e. a complex
|
|
# value) or the three points are not almost collinear.
|
|
elif (p[0] is None or p[1] is None
|
|
or q[1] is None or q[0] is None
|
|
or not flat(p, new_point, q)):
|
|
sample(param_p, param_new, p, new_point, depth + 1)
|
|
sample(param_new, param_q, new_point, q, depth + 1)
|
|
else:
|
|
x_coords.append(q[0])
|
|
y_coords.append(q[1])
|
|
|
|
f_start_x = f_x(self.start)
|
|
f_start_y = f_y(self.start)
|
|
start = [f_start_x, f_start_y]
|
|
f_end_x = f_x(self.end)
|
|
f_end_y = f_y(self.end)
|
|
end = [f_end_x, f_end_y]
|
|
x_coords.append(f_start_x)
|
|
y_coords.append(f_start_y)
|
|
sample(self.start, self.end, start, end, 0)
|
|
|
|
return x_coords, y_coords
|
|
|
|
|
|
### 3D lines
|
|
class Line3DBaseSeries(Line2DBaseSeries):
|
|
"""A base class for 3D lines.
|
|
|
|
Most of the stuff is derived from Line2DBaseSeries."""
|
|
|
|
is_2Dline = False
|
|
is_3Dline = True
|
|
_dim = 3
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
|
|
class Parametric3DLineSeries(Line3DBaseSeries):
|
|
"""Representation for a 3D line consisting of three parametric sympy
|
|
expressions and a range."""
|
|
|
|
is_parametric = True
|
|
|
|
def __init__(self, expr_x, expr_y, expr_z, var_start_end, **kwargs):
|
|
super().__init__()
|
|
self.expr_x = sympify(expr_x)
|
|
self.expr_y = sympify(expr_y)
|
|
self.expr_z = sympify(expr_z)
|
|
self.label = kwargs.get('label', None) or \
|
|
"(%s, %s)" % (str(self.expr_x), str(self.expr_y))
|
|
self.var = sympify(var_start_end[0])
|
|
self.start = float(var_start_end[1])
|
|
self.end = float(var_start_end[2])
|
|
self.nb_of_points = kwargs.get('nb_of_points', 300)
|
|
self.line_color = kwargs.get('line_color', None)
|
|
|
|
def __str__(self):
|
|
return '3D parametric cartesian line: (%s, %s, %s) for %s over %s' % (
|
|
str(self.expr_x), str(self.expr_y), str(self.expr_z),
|
|
str(self.var), str((self.start, self.end)))
|
|
|
|
def get_parameter_points(self):
|
|
np = import_module('numpy')
|
|
return np.linspace(self.start, self.end, num=self.nb_of_points)
|
|
|
|
def get_points(self):
|
|
np = import_module('numpy')
|
|
param = self.get_parameter_points()
|
|
fx = vectorized_lambdify([self.var], self.expr_x)
|
|
fy = vectorized_lambdify([self.var], self.expr_y)
|
|
fz = vectorized_lambdify([self.var], self.expr_z)
|
|
|
|
list_x = fx(param)
|
|
list_y = fy(param)
|
|
list_z = fz(param)
|
|
|
|
list_x = np.array(list_x, dtype=np.float64)
|
|
list_y = np.array(list_y, dtype=np.float64)
|
|
list_z = np.array(list_z, dtype=np.float64)
|
|
|
|
list_x = np.ma.masked_invalid(list_x)
|
|
list_y = np.ma.masked_invalid(list_y)
|
|
list_z = np.ma.masked_invalid(list_z)
|
|
|
|
self._xlim = (np.amin(list_x), np.amax(list_x))
|
|
self._ylim = (np.amin(list_y), np.amax(list_y))
|
|
self._zlim = (np.amin(list_z), np.amax(list_z))
|
|
return list_x, list_y, list_z
|
|
|
|
|
|
### Surfaces
|
|
class SurfaceBaseSeries(BaseSeries):
|
|
"""A base class for 3D surfaces."""
|
|
|
|
is_3Dsurface = True
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.surface_color = None
|
|
|
|
def get_color_array(self):
|
|
np = import_module('numpy')
|
|
c = self.surface_color
|
|
if isinstance(c, Callable):
|
|
f = np.vectorize(c)
|
|
nargs = arity(c)
|
|
if self.is_parametric:
|
|
variables = list(map(centers_of_faces, self.get_parameter_meshes()))
|
|
if nargs == 1:
|
|
return f(variables[0])
|
|
elif nargs == 2:
|
|
return f(*variables)
|
|
variables = list(map(centers_of_faces, self.get_meshes()))
|
|
if nargs == 1:
|
|
return f(variables[0])
|
|
elif nargs == 2:
|
|
return f(*variables[:2])
|
|
else:
|
|
return f(*variables)
|
|
else:
|
|
if isinstance(self, SurfaceOver2DRangeSeries):
|
|
return c*np.ones(min(self.nb_of_points_x, self.nb_of_points_y))
|
|
else:
|
|
return c*np.ones(min(self.nb_of_points_u, self.nb_of_points_v))
|
|
|
|
|
|
class SurfaceOver2DRangeSeries(SurfaceBaseSeries):
|
|
"""Representation for a 3D surface consisting of a sympy expression and 2D
|
|
range."""
|
|
def __init__(self, expr, var_start_end_x, var_start_end_y, **kwargs):
|
|
super().__init__()
|
|
self.expr = sympify(expr)
|
|
self.var_x = sympify(var_start_end_x[0])
|
|
self.start_x = float(var_start_end_x[1])
|
|
self.end_x = float(var_start_end_x[2])
|
|
self.var_y = sympify(var_start_end_y[0])
|
|
self.start_y = float(var_start_end_y[1])
|
|
self.end_y = float(var_start_end_y[2])
|
|
self.nb_of_points_x = kwargs.get('nb_of_points_x', 50)
|
|
self.nb_of_points_y = kwargs.get('nb_of_points_y', 50)
|
|
self.surface_color = kwargs.get('surface_color', None)
|
|
|
|
self._xlim = (self.start_x, self.end_x)
|
|
self._ylim = (self.start_y, self.end_y)
|
|
|
|
def __str__(self):
|
|
return ('cartesian surface: %s for'
|
|
' %s over %s and %s over %s') % (
|
|
str(self.expr),
|
|
str(self.var_x),
|
|
str((self.start_x, self.end_x)),
|
|
str(self.var_y),
|
|
str((self.start_y, self.end_y)))
|
|
|
|
def get_meshes(self):
|
|
np = import_module('numpy')
|
|
mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x,
|
|
num=self.nb_of_points_x),
|
|
np.linspace(self.start_y, self.end_y,
|
|
num=self.nb_of_points_y))
|
|
f = vectorized_lambdify((self.var_x, self.var_y), self.expr)
|
|
mesh_z = f(mesh_x, mesh_y)
|
|
mesh_z = np.array(mesh_z, dtype=np.float64)
|
|
mesh_z = np.ma.masked_invalid(mesh_z)
|
|
self._zlim = (np.amin(mesh_z), np.amax(mesh_z))
|
|
return mesh_x, mesh_y, mesh_z
|
|
|
|
|
|
class ParametricSurfaceSeries(SurfaceBaseSeries):
|
|
"""Representation for a 3D surface consisting of three parametric sympy
|
|
expressions and a range."""
|
|
|
|
is_parametric = True
|
|
|
|
def __init__(
|
|
self, expr_x, expr_y, expr_z, var_start_end_u, var_start_end_v,
|
|
**kwargs):
|
|
super().__init__()
|
|
self.expr_x = sympify(expr_x)
|
|
self.expr_y = sympify(expr_y)
|
|
self.expr_z = sympify(expr_z)
|
|
self.var_u = sympify(var_start_end_u[0])
|
|
self.start_u = float(var_start_end_u[1])
|
|
self.end_u = float(var_start_end_u[2])
|
|
self.var_v = sympify(var_start_end_v[0])
|
|
self.start_v = float(var_start_end_v[1])
|
|
self.end_v = float(var_start_end_v[2])
|
|
self.nb_of_points_u = kwargs.get('nb_of_points_u', 50)
|
|
self.nb_of_points_v = kwargs.get('nb_of_points_v', 50)
|
|
self.surface_color = kwargs.get('surface_color', None)
|
|
|
|
def __str__(self):
|
|
return ('parametric cartesian surface: (%s, %s, %s) for'
|
|
' %s over %s and %s over %s') % (
|
|
str(self.expr_x),
|
|
str(self.expr_y),
|
|
str(self.expr_z),
|
|
str(self.var_u),
|
|
str((self.start_u, self.end_u)),
|
|
str(self.var_v),
|
|
str((self.start_v, self.end_v)))
|
|
|
|
def get_parameter_meshes(self):
|
|
np = import_module('numpy')
|
|
return np.meshgrid(np.linspace(self.start_u, self.end_u,
|
|
num=self.nb_of_points_u),
|
|
np.linspace(self.start_v, self.end_v,
|
|
num=self.nb_of_points_v))
|
|
|
|
def get_meshes(self):
|
|
np = import_module('numpy')
|
|
|
|
mesh_u, mesh_v = self.get_parameter_meshes()
|
|
fx = vectorized_lambdify((self.var_u, self.var_v), self.expr_x)
|
|
fy = vectorized_lambdify((self.var_u, self.var_v), self.expr_y)
|
|
fz = vectorized_lambdify((self.var_u, self.var_v), self.expr_z)
|
|
|
|
mesh_x = fx(mesh_u, mesh_v)
|
|
mesh_y = fy(mesh_u, mesh_v)
|
|
mesh_z = fz(mesh_u, mesh_v)
|
|
|
|
mesh_x = np.array(mesh_x, dtype=np.float64)
|
|
mesh_y = np.array(mesh_y, dtype=np.float64)
|
|
mesh_z = np.array(mesh_z, dtype=np.float64)
|
|
|
|
mesh_x = np.ma.masked_invalid(mesh_x)
|
|
mesh_y = np.ma.masked_invalid(mesh_y)
|
|
mesh_z = np.ma.masked_invalid(mesh_z)
|
|
|
|
self._xlim = (np.amin(mesh_x), np.amax(mesh_x))
|
|
self._ylim = (np.amin(mesh_y), np.amax(mesh_y))
|
|
self._zlim = (np.amin(mesh_z), np.amax(mesh_z))
|
|
|
|
return mesh_x, mesh_y, mesh_z
|
|
|
|
|
|
### Contours
|
|
class ContourSeries(BaseSeries):
|
|
"""Representation for a contour plot."""
|
|
# The code is mostly repetition of SurfaceOver2DRange.
|
|
# Presently used in contour_plot function
|
|
|
|
is_contour = True
|
|
|
|
def __init__(self, expr, var_start_end_x, var_start_end_y):
|
|
super().__init__()
|
|
self.nb_of_points_x = 50
|
|
self.nb_of_points_y = 50
|
|
self.expr = sympify(expr)
|
|
self.var_x = sympify(var_start_end_x[0])
|
|
self.start_x = float(var_start_end_x[1])
|
|
self.end_x = float(var_start_end_x[2])
|
|
self.var_y = sympify(var_start_end_y[0])
|
|
self.start_y = float(var_start_end_y[1])
|
|
self.end_y = float(var_start_end_y[2])
|
|
|
|
self.get_points = self.get_meshes
|
|
|
|
self._xlim = (self.start_x, self.end_x)
|
|
self._ylim = (self.start_y, self.end_y)
|
|
|
|
def __str__(self):
|
|
return ('contour: %s for '
|
|
'%s over %s and %s over %s') % (
|
|
str(self.expr),
|
|
str(self.var_x),
|
|
str((self.start_x, self.end_x)),
|
|
str(self.var_y),
|
|
str((self.start_y, self.end_y)))
|
|
|
|
def get_meshes(self):
|
|
np = import_module('numpy')
|
|
mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x,
|
|
num=self.nb_of_points_x),
|
|
np.linspace(self.start_y, self.end_y,
|
|
num=self.nb_of_points_y))
|
|
f = vectorized_lambdify((self.var_x, self.var_y), self.expr)
|
|
return (mesh_x, mesh_y, f(mesh_x, mesh_y))
|
|
|
|
|
|
##############################################################################
|
|
# Backends
|
|
##############################################################################
|
|
|
|
class BaseBackend:
|
|
"""Base class for all backends. A backend represents the plotting library,
|
|
which implements the necessary functionalities in order to use SymPy
|
|
plotting functions.
|
|
|
|
How the plotting module works:
|
|
|
|
1. Whenever a plotting function is called, the provided expressions are
|
|
processed and a list of instances of the `BaseSeries` class is created,
|
|
containing the necessary information to plot the expressions (eg the
|
|
expression, ranges, series name, ...). Eventually, these objects will
|
|
generate the numerical data to be plotted.
|
|
2. A Plot object is instantiated, which stores the list of series and the
|
|
main attributes of the plot (eg axis labels, title, ...).
|
|
3. When the "show" command is executed, a new backend is instantiated,
|
|
which loops through each series object to generate and plot the
|
|
numerical data. The backend is also going to set the axis labels, title,
|
|
..., according to the values stored in the Plot instance.
|
|
|
|
The backend should check if it supports the data series that it's given
|
|
(eg TextBackend supports only LineOver1DRange).
|
|
|
|
It's the backend responsibility to know how to use the class of data series
|
|
that it's given. Note that the current implementation of the `*Series`
|
|
classes is "matplotlib-centric": the numerical data returned by the
|
|
`get_points` and `get_meshes` methods is meant to be used directly by
|
|
Matplotlib. Therefore, the new backend will have to pre-process the
|
|
numerical data to make it compatible with the chosen plotting library.
|
|
Keep in mind that future SymPy versions may improve the `*Series` classes in
|
|
order to return numerical data "non-matplotlib-centric", hence if you code
|
|
a new backend you have the responsibility to check if its working on each
|
|
SymPy release.
|
|
|
|
Please, explore the `MatplotlibBackend` source code to understand how a
|
|
backend should be coded.
|
|
|
|
Methods
|
|
=======
|
|
|
|
In order to be used by SymPy plotting functions, a backend must implement
|
|
the following methods:
|
|
|
|
* `show(self)`: used to loop over the data series, generate the numerical
|
|
data, plot it and set the axis labels, title, ...
|
|
* save(self, path): used to save the current plot to the specified file
|
|
path.
|
|
* close(self): used to close the current plot backend (note: some plotting
|
|
library doesn't support this functionality. In that case, just raise a
|
|
warning).
|
|
|
|
See also
|
|
========
|
|
|
|
MatplotlibBackend
|
|
"""
|
|
def __init__(self, parent):
|
|
super().__init__()
|
|
self.parent = parent
|
|
|
|
def show(self):
|
|
raise NotImplementedError
|
|
|
|
def save(self, path):
|
|
raise NotImplementedError
|
|
|
|
def close(self):
|
|
raise NotImplementedError
|
|
|
|
|
|
# Don't have to check for the success of importing matplotlib in each case;
|
|
# we will only be using this backend if we can successfully import matploblib
|
|
class MatplotlibBackend(BaseBackend):
|
|
""" This class implements the functionalities to use Matplotlib with SymPy
|
|
plotting functions.
|
|
"""
|
|
def __init__(self, parent):
|
|
super().__init__(parent)
|
|
self.matplotlib = import_module('matplotlib',
|
|
import_kwargs={'fromlist': ['pyplot', 'cm', 'collections']},
|
|
min_module_version='1.1.0', catch=(RuntimeError,))
|
|
self.plt = self.matplotlib.pyplot
|
|
self.cm = self.matplotlib.cm
|
|
self.LineCollection = self.matplotlib.collections.LineCollection
|
|
aspect = getattr(self.parent, 'aspect_ratio', 'auto')
|
|
if aspect != 'auto':
|
|
aspect = float(aspect[1]) / aspect[0]
|
|
|
|
if isinstance(self.parent, Plot):
|
|
nrows, ncolumns = 1, 1
|
|
series_list = [self.parent._series]
|
|
elif isinstance(self.parent, PlotGrid):
|
|
nrows, ncolumns = self.parent.nrows, self.parent.ncolumns
|
|
series_list = self.parent._series
|
|
|
|
self.ax = []
|
|
self.fig = self.plt.figure(figsize=parent.size)
|
|
|
|
for i, series in enumerate(series_list):
|
|
are_3D = [s.is_3D for s in series]
|
|
|
|
if any(are_3D) and not all(are_3D):
|
|
raise ValueError('The matplotlib backend can not mix 2D and 3D.')
|
|
elif all(are_3D):
|
|
# mpl_toolkits.mplot3d is necessary for
|
|
# projection='3d'
|
|
mpl_toolkits = import_module('mpl_toolkits', # noqa
|
|
import_kwargs={'fromlist': ['mplot3d']})
|
|
self.ax.append(self.fig.add_subplot(nrows, ncolumns, i + 1, projection='3d', aspect=aspect))
|
|
|
|
elif not any(are_3D):
|
|
self.ax.append(self.fig.add_subplot(nrows, ncolumns, i + 1, aspect=aspect))
|
|
self.ax[i].spines['left'].set_position('zero')
|
|
self.ax[i].spines['right'].set_color('none')
|
|
self.ax[i].spines['bottom'].set_position('zero')
|
|
self.ax[i].spines['top'].set_color('none')
|
|
self.ax[i].xaxis.set_ticks_position('bottom')
|
|
self.ax[i].yaxis.set_ticks_position('left')
|
|
|
|
@staticmethod
|
|
def get_segments(x, y, z=None):
|
|
""" Convert two list of coordinates to a list of segments to be used
|
|
with Matplotlib's LineCollection.
|
|
|
|
Parameters
|
|
==========
|
|
x: list
|
|
List of x-coordinates
|
|
|
|
y: list
|
|
List of y-coordinates
|
|
|
|
z: list
|
|
List of z-coordinates for a 3D line.
|
|
"""
|
|
np = import_module('numpy')
|
|
if z is not None:
|
|
dim = 3
|
|
points = (x, y, z)
|
|
else:
|
|
dim = 2
|
|
points = (x, y)
|
|
points = np.ma.array(points).T.reshape(-1, 1, dim)
|
|
return np.ma.concatenate([points[:-1], points[1:]], axis=1)
|
|
|
|
def _process_series(self, series, ax, parent):
|
|
np = import_module('numpy')
|
|
mpl_toolkits = import_module(
|
|
'mpl_toolkits', import_kwargs={'fromlist': ['mplot3d']})
|
|
|
|
# XXX Workaround for matplotlib issue
|
|
# https://github.com/matplotlib/matplotlib/issues/17130
|
|
xlims, ylims, zlims = [], [], []
|
|
|
|
for s in series:
|
|
# Create the collections
|
|
if s.is_2Dline:
|
|
x, y = s.get_data()
|
|
if (isinstance(s.line_color, (int, float)) or
|
|
callable(s.line_color)):
|
|
segments = self.get_segments(x, y)
|
|
collection = self.LineCollection(segments)
|
|
collection.set_array(s.get_color_array())
|
|
ax.add_collection(collection)
|
|
else:
|
|
line, = ax.plot(x, y, label=s.label, color=s.line_color)
|
|
elif s.is_contour:
|
|
ax.contour(*s.get_meshes())
|
|
elif s.is_3Dline:
|
|
x, y, z = s.get_data()
|
|
if (isinstance(s.line_color, (int, float)) or
|
|
callable(s.line_color)):
|
|
art3d = mpl_toolkits.mplot3d.art3d
|
|
segments = self.get_segments(x, y, z)
|
|
collection = art3d.Line3DCollection(segments)
|
|
collection.set_array(s.get_color_array())
|
|
ax.add_collection(collection)
|
|
else:
|
|
ax.plot(x, y, z, label=s.label,
|
|
color=s.line_color)
|
|
|
|
xlims.append(s._xlim)
|
|
ylims.append(s._ylim)
|
|
zlims.append(s._zlim)
|
|
elif s.is_3Dsurface:
|
|
x, y, z = s.get_meshes()
|
|
collection = ax.plot_surface(x, y, z,
|
|
cmap=getattr(self.cm, 'viridis', self.cm.jet),
|
|
rstride=1, cstride=1, linewidth=0.1)
|
|
if isinstance(s.surface_color, (float, int)) or isinstance(s.surface_color, Callable):
|
|
color_array = s.get_color_array()
|
|
color_array = color_array.reshape(color_array.size)
|
|
collection.set_array(color_array)
|
|
else:
|
|
collection.set_color(s.surface_color)
|
|
|
|
xlims.append(s._xlim)
|
|
ylims.append(s._ylim)
|
|
zlims.append(s._zlim)
|
|
elif s.is_implicit:
|
|
points = s.get_raster()
|
|
if len(points) == 2:
|
|
# interval math plotting
|
|
x, y = _matplotlib_list(points[0])
|
|
ax.fill(x, y, facecolor=s.line_color, edgecolor='None')
|
|
else:
|
|
# use contourf or contour depending on whether it is
|
|
# an inequality or equality.
|
|
# XXX: ``contour`` plots multiple lines. Should be fixed.
|
|
ListedColormap = self.matplotlib.colors.ListedColormap
|
|
colormap = ListedColormap(["white", s.line_color])
|
|
xarray, yarray, zarray, plot_type = points
|
|
if plot_type == 'contour':
|
|
ax.contour(xarray, yarray, zarray, cmap=colormap)
|
|
else:
|
|
ax.contourf(xarray, yarray, zarray, cmap=colormap)
|
|
else:
|
|
raise NotImplementedError(
|
|
'{} is not supported in the sympy plotting module '
|
|
'with matplotlib backend. Please report this issue.'
|
|
.format(ax))
|
|
|
|
Axes3D = mpl_toolkits.mplot3d.Axes3D
|
|
if not isinstance(ax, Axes3D):
|
|
ax.autoscale_view(
|
|
scalex=ax.get_autoscalex_on(),
|
|
scaley=ax.get_autoscaley_on())
|
|
else:
|
|
# XXX Workaround for matplotlib issue
|
|
# https://github.com/matplotlib/matplotlib/issues/17130
|
|
if xlims:
|
|
xlims = np.array(xlims)
|
|
xlim = (np.amin(xlims[:, 0]), np.amax(xlims[:, 1]))
|
|
ax.set_xlim(xlim)
|
|
else:
|
|
ax.set_xlim([0, 1])
|
|
|
|
if ylims:
|
|
ylims = np.array(ylims)
|
|
ylim = (np.amin(ylims[:, 0]), np.amax(ylims[:, 1]))
|
|
ax.set_ylim(ylim)
|
|
else:
|
|
ax.set_ylim([0, 1])
|
|
|
|
if zlims:
|
|
zlims = np.array(zlims)
|
|
zlim = (np.amin(zlims[:, 0]), np.amax(zlims[:, 1]))
|
|
ax.set_zlim(zlim)
|
|
else:
|
|
ax.set_zlim([0, 1])
|
|
|
|
# Set global options.
|
|
# TODO The 3D stuff
|
|
# XXX The order of those is important.
|
|
if parent.xscale and not isinstance(ax, Axes3D):
|
|
ax.set_xscale(parent.xscale)
|
|
if parent.yscale and not isinstance(ax, Axes3D):
|
|
ax.set_yscale(parent.yscale)
|
|
if not isinstance(ax, Axes3D) or self.matplotlib.__version__ >= '1.2.0': # XXX in the distant future remove this check
|
|
ax.set_autoscale_on(parent.autoscale)
|
|
if parent.axis_center:
|
|
val = parent.axis_center
|
|
if isinstance(ax, Axes3D):
|
|
pass
|
|
elif val == 'center':
|
|
ax.spines['left'].set_position('center')
|
|
ax.spines['bottom'].set_position('center')
|
|
elif val == 'auto':
|
|
xl, xh = ax.get_xlim()
|
|
yl, yh = ax.get_ylim()
|
|
pos_left = ('data', 0) if xl*xh <= 0 else 'center'
|
|
pos_bottom = ('data', 0) if yl*yh <= 0 else 'center'
|
|
ax.spines['left'].set_position(pos_left)
|
|
ax.spines['bottom'].set_position(pos_bottom)
|
|
else:
|
|
ax.spines['left'].set_position(('data', val[0]))
|
|
ax.spines['bottom'].set_position(('data', val[1]))
|
|
if not parent.axis:
|
|
ax.set_axis_off()
|
|
if parent.legend:
|
|
if ax.legend():
|
|
ax.legend_.set_visible(parent.legend)
|
|
if parent.margin:
|
|
ax.set_xmargin(parent.margin)
|
|
ax.set_ymargin(parent.margin)
|
|
if parent.title:
|
|
ax.set_title(parent.title)
|
|
if parent.xlabel:
|
|
ax.set_xlabel(parent.xlabel, position=(1, 0))
|
|
if parent.ylabel:
|
|
ax.set_ylabel(parent.ylabel, position=(0, 1))
|
|
if isinstance(ax, Axes3D) and parent.zlabel:
|
|
ax.set_zlabel(parent.zlabel, position=(0, 1))
|
|
if parent.annotations:
|
|
for a in parent.annotations:
|
|
ax.annotate(**a)
|
|
if parent.markers:
|
|
for marker in parent.markers:
|
|
# make a copy of the marker dictionary
|
|
# so that it doesn't get altered
|
|
m = marker.copy()
|
|
args = m.pop('args')
|
|
ax.plot(*args, **m)
|
|
if parent.rectangles:
|
|
for r in parent.rectangles:
|
|
rect = self.matplotlib.patches.Rectangle(**r)
|
|
ax.add_patch(rect)
|
|
if parent.fill:
|
|
ax.fill_between(**parent.fill)
|
|
|
|
# xlim and ylim shoulld always be set at last so that plot limits
|
|
# doesn't get altered during the process.
|
|
if parent.xlim:
|
|
ax.set_xlim(parent.xlim)
|
|
if parent.ylim:
|
|
ax.set_ylim(parent.ylim)
|
|
|
|
|
|
def process_series(self):
|
|
"""
|
|
Iterates over every ``Plot`` object and further calls
|
|
_process_series()
|
|
"""
|
|
parent = self.parent
|
|
if isinstance(parent, Plot):
|
|
series_list = [parent._series]
|
|
else:
|
|
series_list = parent._series
|
|
|
|
for i, (series, ax) in enumerate(zip(series_list, self.ax)):
|
|
if isinstance(self.parent, PlotGrid):
|
|
parent = self.parent.args[i]
|
|
self._process_series(series, ax, parent)
|
|
|
|
def show(self):
|
|
self.process_series()
|
|
#TODO after fixing https://github.com/ipython/ipython/issues/1255
|
|
# you can uncomment the next line and remove the pyplot.show() call
|
|
#self.fig.show()
|
|
if _show:
|
|
self.fig.tight_layout()
|
|
self.plt.show()
|
|
else:
|
|
self.close()
|
|
|
|
def save(self, path):
|
|
self.process_series()
|
|
self.fig.savefig(path)
|
|
|
|
def close(self):
|
|
self.plt.close(self.fig)
|
|
|
|
|
|
class TextBackend(BaseBackend):
|
|
def __init__(self, parent):
|
|
super().__init__(parent)
|
|
|
|
def show(self):
|
|
if not _show:
|
|
return
|
|
if len(self.parent._series) != 1:
|
|
raise ValueError(
|
|
'The TextBackend supports only one graph per Plot.')
|
|
elif not isinstance(self.parent._series[0], LineOver1DRangeSeries):
|
|
raise ValueError(
|
|
'The TextBackend supports only expressions over a 1D range')
|
|
else:
|
|
ser = self.parent._series[0]
|
|
textplot(ser.expr, ser.start, ser.end)
|
|
|
|
def close(self):
|
|
pass
|
|
|
|
|
|
class DefaultBackend(BaseBackend):
|
|
def __new__(cls, parent):
|
|
matplotlib = import_module('matplotlib', min_module_version='1.1.0', catch=(RuntimeError,))
|
|
if matplotlib:
|
|
return MatplotlibBackend(parent)
|
|
else:
|
|
return TextBackend(parent)
|
|
|
|
|
|
plot_backends = {
|
|
'matplotlib': MatplotlibBackend,
|
|
'text': TextBackend,
|
|
'default': DefaultBackend
|
|
}
|
|
|
|
|
|
##############################################################################
|
|
# Finding the centers of line segments or mesh faces
|
|
##############################################################################
|
|
|
|
def centers_of_segments(array):
|
|
np = import_module('numpy')
|
|
return np.mean(np.vstack((array[:-1], array[1:])), 0)
|
|
|
|
|
|
def centers_of_faces(array):
|
|
np = import_module('numpy')
|
|
return np.mean(np.dstack((array[:-1, :-1],
|
|
array[1:, :-1],
|
|
array[:-1, 1:],
|
|
array[:-1, :-1],
|
|
)), 2)
|
|
|
|
|
|
def flat(x, y, z, eps=1e-3):
|
|
"""Checks whether three points are almost collinear"""
|
|
np = import_module('numpy')
|
|
# Workaround plotting piecewise (#8577):
|
|
# workaround for `lambdify` in `.experimental_lambdify` fails
|
|
# to return numerical values in some cases. Lower-level fix
|
|
# in `lambdify` is possible.
|
|
vector_a = (x - y).astype(np.float64)
|
|
vector_b = (z - y).astype(np.float64)
|
|
dot_product = np.dot(vector_a, vector_b)
|
|
vector_a_norm = np.linalg.norm(vector_a)
|
|
vector_b_norm = np.linalg.norm(vector_b)
|
|
cos_theta = dot_product / (vector_a_norm * vector_b_norm)
|
|
return abs(cos_theta + 1) < eps
|
|
|
|
def _matplotlib_list(interval_list):
|
|
"""
|
|
Returns lists for matplotlib ``fill`` command from a list of bounding
|
|
rectangular intervals
|
|
"""
|
|
xlist = []
|
|
ylist = []
|
|
if len(interval_list):
|
|
for intervals in interval_list:
|
|
intervalx = intervals[0]
|
|
intervaly = intervals[1]
|
|
xlist.extend([intervalx.start, intervalx.start,
|
|
intervalx.end, intervalx.end, None])
|
|
ylist.extend([intervaly.start, intervaly.end,
|
|
intervaly.end, intervaly.start, None])
|
|
else:
|
|
#XXX Ugly hack. Matplotlib does not accept empty lists for ``fill``
|
|
xlist.extend([None, None, None, None])
|
|
ylist.extend([None, None, None, None])
|
|
return xlist, ylist
|
|
|
|
|
|
####New API for plotting module ####
|
|
|
|
# TODO: Add color arrays for plots.
|
|
# TODO: Add more plotting options for 3d plots.
|
|
# TODO: Adaptive sampling for 3D plots.
|
|
|
|
def plot(*args, show=True, **kwargs):
|
|
"""Plots a function of a single variable as a curve.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
args :
|
|
The first argument is the expression representing the function
|
|
of single variable to be plotted.
|
|
|
|
The last argument is a 3-tuple denoting the range of the free
|
|
variable. e.g. ``(x, 0, 5)``
|
|
|
|
Typical usage examples are in the followings:
|
|
|
|
- Plotting a single expression with a single range.
|
|
``plot(expr, range, **kwargs)``
|
|
- Plotting a single expression with the default range (-10, 10).
|
|
``plot(expr, **kwargs)``
|
|
- Plotting multiple expressions with a single range.
|
|
``plot(expr1, expr2, ..., range, **kwargs)``
|
|
- Plotting multiple expressions with multiple ranges.
|
|
``plot((expr1, range1), (expr2, range2), ..., **kwargs)``
|
|
|
|
It is best practice to specify range explicitly because default
|
|
range may change in the future if a more advanced default range
|
|
detection algorithm is implemented.
|
|
|
|
show : bool, optional
|
|
The default value is set to ``True``. Set show to ``False`` and
|
|
the function will not display the plot. The returned instance of
|
|
the ``Plot`` class can then be used to save or display the plot
|
|
by calling the ``save()`` and ``show()`` methods respectively.
|
|
|
|
line_color : string, or float, or function, optional
|
|
Specifies the color for the plot.
|
|
See ``Plot`` to see how to set color for the plots.
|
|
Note that by setting ``line_color``, it would be applied simultaneously
|
|
to all the series.
|
|
|
|
title : str, optional
|
|
Title of the plot. It is set to the latex representation of
|
|
the expression, if the plot has only one expression.
|
|
|
|
label : str, optional
|
|
The label of the expression in the plot. It will be used when
|
|
called with ``legend``. Default is the name of the expression.
|
|
e.g. ``sin(x)``
|
|
|
|
xlabel : str, optional
|
|
Label for the x-axis.
|
|
|
|
ylabel : str, optional
|
|
Label for the y-axis.
|
|
|
|
xscale : 'linear' or 'log', optional
|
|
Sets the scaling of the x-axis.
|
|
|
|
yscale : 'linear' or 'log', optional
|
|
Sets the scaling of the y-axis.
|
|
|
|
axis_center : (float, float), optional
|
|
Tuple of two floats denoting the coordinates of the center or
|
|
{'center', 'auto'}
|
|
|
|
xlim : (float, float), optional
|
|
Denotes the x-axis limits, ``(min, max)```.
|
|
|
|
ylim : (float, float), optional
|
|
Denotes the y-axis limits, ``(min, max)```.
|
|
|
|
annotations : list, optional
|
|
A list of dictionaries specifying the type of annotation
|
|
required. The keys in the dictionary should be equivalent
|
|
to the arguments of the matplotlib's annotate() function.
|
|
|
|
markers : list, optional
|
|
A list of dictionaries specifying the type the markers required.
|
|
The keys in the dictionary should be equivalent to the arguments
|
|
of the matplotlib's plot() function along with the marker
|
|
related keyworded arguments.
|
|
|
|
rectangles : list, optional
|
|
A list of dictionaries specifying the dimensions of the
|
|
rectangles to be plotted. The keys in the dictionary should be
|
|
equivalent to the arguments of the matplotlib's
|
|
patches.Rectangle class.
|
|
|
|
fill : dict, optional
|
|
A dictionary specifying the type of color filling required in
|
|
the plot. The keys in the dictionary should be equivalent to the
|
|
arguments of the matplotlib's fill_between() function.
|
|
|
|
adaptive : bool, optional
|
|
The default value is set to ``True``. Set adaptive to ``False``
|
|
and specify ``nb_of_points`` if uniform sampling is required.
|
|
|
|
The plotting uses an adaptive algorithm which samples
|
|
recursively to accurately plot. The adaptive algorithm uses a
|
|
random point near the midpoint of two points that has to be
|
|
further sampled. Hence the same plots can appear slightly
|
|
different.
|
|
|
|
depth : int, optional
|
|
Recursion depth of the adaptive algorithm. A depth of value
|
|
``n`` samples a maximum of `2^{n}` points.
|
|
|
|
If the ``adaptive`` flag is set to ``False``, this will be
|
|
ignored.
|
|
|
|
nb_of_points : int, optional
|
|
Used when the ``adaptive`` is set to ``False``. The function
|
|
is uniformly sampled at ``nb_of_points`` number of points.
|
|
|
|
If the ``adaptive`` flag is set to ``True``, this will be
|
|
ignored.
|
|
|
|
size : (float, float), optional
|
|
A tuple in the form (width, height) in inches to specify the size of
|
|
the overall figure. The default value is set to ``None``, meaning
|
|
the size will be set by the default backend.
|
|
|
|
Examples
|
|
========
|
|
|
|
.. plot::
|
|
:context: close-figs
|
|
:format: doctest
|
|
:include-source: True
|
|
|
|
>>> from sympy import symbols
|
|
>>> from sympy.plotting import plot
|
|
>>> x = symbols('x')
|
|
|
|
Single Plot
|
|
|
|
.. plot::
|
|
:context: close-figs
|
|
:format: doctest
|
|
:include-source: True
|
|
|
|
>>> plot(x**2, (x, -5, 5))
|
|
Plot object containing:
|
|
[0]: cartesian line: x**2 for x over (-5.0, 5.0)
|
|
|
|
Multiple plots with single range.
|
|
|
|
.. plot::
|
|
:context: close-figs
|
|
:format: doctest
|
|
:include-source: True
|
|
|
|
>>> plot(x, x**2, x**3, (x, -5, 5))
|
|
Plot object containing:
|
|
[0]: cartesian line: x for x over (-5.0, 5.0)
|
|
[1]: cartesian line: x**2 for x over (-5.0, 5.0)
|
|
[2]: cartesian line: x**3 for x over (-5.0, 5.0)
|
|
|
|
Multiple plots with different ranges.
|
|
|
|
.. plot::
|
|
:context: close-figs
|
|
:format: doctest
|
|
:include-source: True
|
|
|
|
>>> plot((x**2, (x, -6, 6)), (x, (x, -5, 5)))
|
|
Plot object containing:
|
|
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
|
|
[1]: cartesian line: x for x over (-5.0, 5.0)
|
|
|
|
No adaptive sampling.
|
|
|
|
.. plot::
|
|
:context: close-figs
|
|
:format: doctest
|
|
:include-source: True
|
|
|
|
>>> plot(x**2, adaptive=False, nb_of_points=400)
|
|
Plot object containing:
|
|
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
|
|
|
|
See Also
|
|
========
|
|
|
|
Plot, LineOver1DRangeSeries
|
|
|
|
"""
|
|
args = list(map(sympify, args))
|
|
free = set()
|
|
for a in args:
|
|
if isinstance(a, Expr):
|
|
free |= a.free_symbols
|
|
if len(free) > 1:
|
|
raise ValueError(
|
|
'The same variable should be used in all '
|
|
'univariate expressions being plotted.')
|
|
x = free.pop() if free else Symbol('x')
|
|
kwargs.setdefault('xlabel', x.name)
|
|
kwargs.setdefault('ylabel', 'f(%s)' % x.name)
|
|
series = []
|
|
plot_expr = check_arguments(args, 1, 1)
|
|
series = [LineOver1DRangeSeries(*arg, **kwargs) for arg in plot_expr]
|
|
|
|
plots = Plot(*series, **kwargs)
|
|
if show:
|
|
plots.show()
|
|
return plots
|
|
|
|
|
|
def plot_parametric(*args, show=True, **kwargs):
|
|
"""
|
|
Plots a 2D parametric curve.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
args
|
|
Common specifications are:
|
|
|
|
- Plotting a single parametric curve with a range
|
|
``plot_parametric((expr_x, expr_y), range)``
|
|
- Plotting multiple parametric curves with the same range
|
|
``plot_parametric((expr_x, expr_y), ..., range)``
|
|
- Plotting multiple parametric curves with different ranges
|
|
``plot_parametric((expr_x, expr_y, range), ...)``
|
|
|
|
``expr_x`` is the expression representing $x$ component of the
|
|
parametric function.
|
|
|
|
``expr_y`` is the expression representing $y$ component of the
|
|
parametric function.
|
|
|
|
``range`` is a 3-tuple denoting the parameter symbol, start and
|
|
stop. For example, ``(u, 0, 5)``.
|
|
|
|
If the range is not specified, then a default range of (-10, 10)
|
|
is used.
|
|
|
|
However, if the arguments are specified as
|
|
``(expr_x, expr_y, range), ...``, you must specify the ranges
|
|
for each expressions manually.
|
|
|
|
Default range may change in the future if a more advanced
|
|
algorithm is implemented.
|
|
|
|
adaptive : bool, optional
|
|
Specifies whether to use the adaptive sampling or not.
|
|
|
|
The default value is set to ``True``. Set adaptive to ``False``
|
|
and specify ``nb_of_points`` if uniform sampling is required.
|
|
|
|
depth : int, optional
|
|
The recursion depth of the adaptive algorithm. A depth of
|
|
value $n$ samples a maximum of $2^n$ points.
|
|
|
|
nb_of_points : int, optional
|
|
Used when the ``adaptive`` flag is set to ``False``.
|
|
|
|
Specifies the number of the points used for the uniform
|
|
sampling.
|
|
|
|
line_color : string, or float, or function, optional
|
|
Specifies the color for the plot.
|
|
See ``Plot`` to see how to set color for the plots.
|
|
Note that by setting ``line_color``, it would be applied simultaneously
|
|
to all the series.
|
|
|
|
label : str, optional
|
|
The label of the expression in the plot. It will be used when
|
|
called with ``legend``. Default is the name of the expression.
|
|
e.g. ``sin(x)``
|
|
|
|
xlabel : str, optional
|
|
Label for the x-axis.
|
|
|
|
ylabel : str, optional
|
|
Label for the y-axis.
|
|
|
|
xscale : 'linear' or 'log', optional
|
|
Sets the scaling of the x-axis.
|
|
|
|
yscale : 'linear' or 'log', optional
|
|
Sets the scaling of the y-axis.
|
|
|
|
axis_center : (float, float), optional
|
|
Tuple of two floats denoting the coordinates of the center or
|
|
{'center', 'auto'}
|
|
|
|
xlim : (float, float), optional
|
|
Denotes the x-axis limits, ``(min, max)```.
|
|
|
|
ylim : (float, float), optional
|
|
Denotes the y-axis limits, ``(min, max)```.
|
|
|
|
size : (float, float), optional
|
|
A tuple in the form (width, height) in inches to specify the size of
|
|
the overall figure. The default value is set to ``None``, meaning
|
|
the size will be set by the default backend.
|
|
|
|
Examples
|
|
========
|
|
|
|
.. plot::
|
|
:context: reset
|
|
:format: doctest
|
|
:include-source: True
|
|
|
|
>>> from sympy import symbols, cos, sin
|
|
>>> from sympy.plotting import plot_parametric
|
|
>>> u = symbols('u')
|
|
|
|
A parametric plot with a single expression:
|
|
|
|
.. plot::
|
|
:context: close-figs
|
|
:format: doctest
|
|
:include-source: True
|
|
|
|
>>> plot_parametric((cos(u), sin(u)), (u, -5, 5))
|
|
Plot object containing:
|
|
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0)
|
|
|
|
A parametric plot with multiple expressions with the same range:
|
|
|
|
.. plot::
|
|
:context: close-figs
|
|
:format: doctest
|
|
:include-source: True
|
|
|
|
>>> plot_parametric((cos(u), sin(u)), (u, cos(u)), (u, -10, 10))
|
|
Plot object containing:
|
|
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-10.0, 10.0)
|
|
[1]: parametric cartesian line: (u, cos(u)) for u over (-10.0, 10.0)
|
|
|
|
A parametric plot with multiple expressions with different ranges
|
|
for each curve:
|
|
|
|
.. plot::
|
|
:context: close-figs
|
|
:format: doctest
|
|
:include-source: True
|
|
|
|
>>> plot_parametric((cos(u), sin(u), (u, -5, 5)),
|
|
... (cos(u), u, (u, -5, 5)))
|
|
Plot object containing:
|
|
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0)
|
|
[1]: parametric cartesian line: (cos(u), u) for u over (-5.0, 5.0)
|
|
|
|
Notes
|
|
=====
|
|
|
|
The plotting uses an adaptive algorithm which samples recursively to
|
|
accurately plot the curve. The adaptive algorithm uses a random point
|
|
near the midpoint of two points that has to be further sampled.
|
|
Hence, repeating the same plot command can give slightly different
|
|
results because of the random sampling.
|
|
|
|
If there are multiple plots, then the same optional arguments are
|
|
applied to all the plots drawn in the same canvas. If you want to
|
|
set these options separately, you can index the returned ``Plot``
|
|
object and set it.
|
|
|
|
For example, when you specify ``line_color`` once, it would be
|
|
applied simultaneously to both series.
|
|
|
|
.. plot::
|
|
:context: close-figs
|
|
:format: doctest
|
|
:include-source: True
|
|
|
|
>>> from sympy import pi
|
|
>>> expr1 = (u, cos(2*pi*u)/2 + 1/2)
|
|
>>> expr2 = (u, sin(2*pi*u)/2 + 1/2)
|
|
>>> p = plot_parametric(expr1, expr2, (u, 0, 1), line_color='blue')
|
|
|
|
If you want to specify the line color for the specific series, you
|
|
should index each item and apply the property manually.
|
|
|
|
.. plot::
|
|
:context: close-figs
|
|
:format: doctest
|
|
:include-source: True
|
|
|
|
>>> p[0].line_color = 'red'
|
|
>>> p.show()
|
|
|
|
See Also
|
|
========
|
|
|
|
Plot, Parametric2DLineSeries
|
|
"""
|
|
args = list(map(sympify, args))
|
|
series = []
|
|
plot_expr = check_arguments(args, 2, 1)
|
|
series = [Parametric2DLineSeries(*arg, **kwargs) for arg in plot_expr]
|
|
plots = Plot(*series, **kwargs)
|
|
if show:
|
|
plots.show()
|
|
return plots
|
|
|
|
|
|
def plot3d_parametric_line(*args, show=True, **kwargs):
|
|
"""
|
|
Plots a 3D parametric line plot.
|
|
|
|
Usage
|
|
=====
|
|
|
|
Single plot:
|
|
|
|
``plot3d_parametric_line(expr_x, expr_y, expr_z, range, **kwargs)``
|
|
|
|
If the range is not specified, then a default range of (-10, 10) is used.
|
|
|
|
Multiple plots.
|
|
|
|
``plot3d_parametric_line((expr_x, expr_y, expr_z, range), ..., **kwargs)``
|
|
|
|
Ranges have to be specified for every expression.
|
|
|
|
Default range may change in the future if a more advanced default range
|
|
detection algorithm is implemented.
|
|
|
|
Arguments
|
|
=========
|
|
|
|
``expr_x`` : Expression representing the function along x.
|
|
|
|
``expr_y`` : Expression representing the function along y.
|
|
|
|
``expr_z`` : Expression representing the function along z.
|
|
|
|
``range``: ``(u, 0, 5)``, A 3-tuple denoting the range of the parameter
|
|
variable.
|
|
|
|
Keyword Arguments
|
|
=================
|
|
|
|
Arguments for ``Parametric3DLineSeries`` class.
|
|
|
|
``nb_of_points``: The range is uniformly sampled at ``nb_of_points``
|
|
number of points.
|
|
|
|
Aesthetics:
|
|
|
|
``line_color``: string, or float, or function, optional
|
|
Specifies the color for the plot.
|
|
See ``Plot`` to see how to set color for the plots.
|
|
Note that by setting ``line_color``, it would be applied simultaneously
|
|
to all the series.
|
|
|
|
``label``: str
|
|
The label to the plot. It will be used when called with ``legend=True``
|
|
to denote the function with the given label in the plot.
|
|
|
|
If there are multiple plots, then the same series arguments are applied to
|
|
all the plots. If you want to set these options separately, you can index
|
|
the returned ``Plot`` object and set it.
|
|
|
|
Arguments for ``Plot`` class.
|
|
|
|
``title`` : str. Title of the plot.
|
|
|
|
``size`` : (float, float), optional
|
|
A tuple in the form (width, height) in inches to specify the size of
|
|
the overall figure. The default value is set to ``None``, meaning
|
|
the size will be set by the default backend.
|
|
|
|
Examples
|
|
========
|
|
|
|
.. plot::
|
|
:context: reset
|
|
:format: doctest
|
|
:include-source: True
|
|
|
|
>>> from sympy import symbols, cos, sin
|
|
>>> from sympy.plotting import plot3d_parametric_line
|
|
>>> u = symbols('u')
|
|
|
|
Single plot.
|
|
|
|
.. plot::
|
|
:context: close-figs
|
|
:format: doctest
|
|
:include-source: True
|
|
|
|
>>> plot3d_parametric_line(cos(u), sin(u), u, (u, -5, 5))
|
|
Plot object containing:
|
|
[0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0)
|
|
|
|
|
|
Multiple plots.
|
|
|
|
.. plot::
|
|
:context: close-figs
|
|
:format: doctest
|
|
:include-source: True
|
|
|
|
>>> plot3d_parametric_line((cos(u), sin(u), u, (u, -5, 5)),
|
|
... (sin(u), u**2, u, (u, -5, 5)))
|
|
Plot object containing:
|
|
[0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0)
|
|
[1]: 3D parametric cartesian line: (sin(u), u**2, u) for u over (-5.0, 5.0)
|
|
|
|
|
|
See Also
|
|
========
|
|
|
|
Plot, Parametric3DLineSeries
|
|
|
|
"""
|
|
args = list(map(sympify, args))
|
|
series = []
|
|
plot_expr = check_arguments(args, 3, 1)
|
|
series = [Parametric3DLineSeries(*arg, **kwargs) for arg in plot_expr]
|
|
kwargs.setdefault("xlabel", "x")
|
|
kwargs.setdefault("ylabel", "y")
|
|
kwargs.setdefault("zlabel", "z")
|
|
plots = Plot(*series, **kwargs)
|
|
if show:
|
|
plots.show()
|
|
return plots
|
|
|
|
|
|
def plot3d(*args, show=True, **kwargs):
|
|
"""
|
|
Plots a 3D surface plot.
|
|
|
|
Usage
|
|
=====
|
|
|
|
Single plot
|
|
|
|
``plot3d(expr, range_x, range_y, **kwargs)``
|
|
|
|
If the ranges are not specified, then a default range of (-10, 10) is used.
|
|
|
|
Multiple plot with the same range.
|
|
|
|
``plot3d(expr1, expr2, range_x, range_y, **kwargs)``
|
|
|
|
If the ranges are not specified, then a default range of (-10, 10) is used.
|
|
|
|
Multiple plots with different ranges.
|
|
|
|
``plot3d((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)``
|
|
|
|
Ranges have to be specified for every expression.
|
|
|
|
Default range may change in the future if a more advanced default range
|
|
detection algorithm is implemented.
|
|
|
|
Arguments
|
|
=========
|
|
|
|
``expr`` : Expression representing the function along x.
|
|
|
|
``range_x``: (x, 0, 5), A 3-tuple denoting the range of the x
|
|
variable.
|
|
|
|
``range_y``: (y, 0, 5), A 3-tuple denoting the range of the y
|
|
variable.
|
|
|
|
Keyword Arguments
|
|
=================
|
|
|
|
Arguments for ``SurfaceOver2DRangeSeries`` class:
|
|
|
|
``nb_of_points_x``: int. The x range is sampled uniformly at
|
|
``nb_of_points_x`` of points.
|
|
|
|
``nb_of_points_y``: int. The y range is sampled uniformly at
|
|
``nb_of_points_y`` of points.
|
|
|
|
Aesthetics:
|
|
|
|
``surface_color``: Function which returns a float. Specifies the color for
|
|
the surface of the plot. See ``sympy.plotting.Plot`` for more details.
|
|
|
|
If there are multiple plots, then the same series arguments are applied to
|
|
all the plots. If you want to set these options separately, you can index
|
|
the returned ``Plot`` object and set it.
|
|
|
|
Arguments for ``Plot`` class:
|
|
|
|
``title`` : str. Title of the plot.
|
|
``size`` : (float, float), optional
|
|
A tuple in the form (width, height) in inches to specify the size of the
|
|
overall figure. The default value is set to ``None``, meaning the size will
|
|
be set by the default backend.
|
|
|
|
Examples
|
|
========
|
|
|
|
.. plot::
|
|
:context: reset
|
|
:format: doctest
|
|
:include-source: True
|
|
|
|
>>> from sympy import symbols
|
|
>>> from sympy.plotting import plot3d
|
|
>>> x, y = symbols('x y')
|
|
|
|
Single plot
|
|
|
|
.. plot::
|
|
:context: close-figs
|
|
:format: doctest
|
|
:include-source: True
|
|
|
|
>>> plot3d(x*y, (x, -5, 5), (y, -5, 5))
|
|
Plot object containing:
|
|
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
|
|
|
|
|
|
Multiple plots with same range
|
|
|
|
.. plot::
|
|
:context: close-figs
|
|
:format: doctest
|
|
:include-source: True
|
|
|
|
>>> plot3d(x*y, -x*y, (x, -5, 5), (y, -5, 5))
|
|
Plot object containing:
|
|
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
|
|
[1]: cartesian surface: -x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
|
|
|
|
|
|
Multiple plots with different ranges.
|
|
|
|
.. plot::
|
|
:context: close-figs
|
|
:format: doctest
|
|
:include-source: True
|
|
|
|
>>> plot3d((x**2 + y**2, (x, -5, 5), (y, -5, 5)),
|
|
... (x*y, (x, -3, 3), (y, -3, 3)))
|
|
Plot object containing:
|
|
[0]: cartesian surface: x**2 + y**2 for x over (-5.0, 5.0) and y over (-5.0, 5.0)
|
|
[1]: cartesian surface: x*y for x over (-3.0, 3.0) and y over (-3.0, 3.0)
|
|
|
|
|
|
See Also
|
|
========
|
|
|
|
Plot, SurfaceOver2DRangeSeries
|
|
|
|
"""
|
|
|
|
args = list(map(sympify, args))
|
|
series = []
|
|
plot_expr = check_arguments(args, 1, 2)
|
|
series = [SurfaceOver2DRangeSeries(*arg, **kwargs) for arg in plot_expr]
|
|
xlabel = series[0].var_x.name
|
|
ylabel = series[0].var_y.name
|
|
kwargs.setdefault("xlabel", xlabel)
|
|
kwargs.setdefault("ylabel", ylabel)
|
|
kwargs.setdefault("zlabel", "f(%s, %s)" % (xlabel, ylabel))
|
|
plots = Plot(*series, **kwargs)
|
|
if show:
|
|
plots.show()
|
|
return plots
|
|
|
|
|
|
def plot3d_parametric_surface(*args, show=True, **kwargs):
|
|
"""
|
|
Plots a 3D parametric surface plot.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
Single plot.
|
|
|
|
``plot3d_parametric_surface(expr_x, expr_y, expr_z, range_u, range_v, **kwargs)``
|
|
|
|
If the ranges is not specified, then a default range of (-10, 10) is used.
|
|
|
|
Multiple plots.
|
|
|
|
``plot3d_parametric_surface((expr_x, expr_y, expr_z, range_u, range_v), ..., **kwargs)``
|
|
|
|
Ranges have to be specified for every expression.
|
|
|
|
Default range may change in the future if a more advanced default range
|
|
detection algorithm is implemented.
|
|
|
|
Arguments
|
|
=========
|
|
|
|
``expr_x``: Expression representing the function along ``x``.
|
|
|
|
``expr_y``: Expression representing the function along ``y``.
|
|
|
|
``expr_z``: Expression representing the function along ``z``.
|
|
|
|
``range_u``: ``(u, 0, 5)``, A 3-tuple denoting the range of the ``u``
|
|
variable.
|
|
|
|
``range_v``: ``(v, 0, 5)``, A 3-tuple denoting the range of the v
|
|
variable.
|
|
|
|
Keyword Arguments
|
|
=================
|
|
|
|
Arguments for ``ParametricSurfaceSeries`` class:
|
|
|
|
``nb_of_points_u``: int. The ``u`` range is sampled uniformly at
|
|
``nb_of_points_v`` of points
|
|
|
|
``nb_of_points_y``: int. The ``v`` range is sampled uniformly at
|
|
``nb_of_points_y`` of points
|
|
|
|
Aesthetics:
|
|
|
|
``surface_color``: Function which returns a float. Specifies the color for
|
|
the surface of the plot. See ``sympy.plotting.Plot`` for more details.
|
|
|
|
If there are multiple plots, then the same series arguments are applied for
|
|
all the plots. If you want to set these options separately, you can index
|
|
the returned ``Plot`` object and set it.
|
|
|
|
|
|
Arguments for ``Plot`` class:
|
|
|
|
``title`` : str. Title of the plot.
|
|
``size`` : (float, float), optional
|
|
A tuple in the form (width, height) in inches to specify the size of the
|
|
overall figure. The default value is set to ``None``, meaning the size will
|
|
be set by the default backend.
|
|
|
|
Examples
|
|
========
|
|
|
|
.. plot::
|
|
:context: reset
|
|
:format: doctest
|
|
:include-source: True
|
|
|
|
>>> from sympy import symbols, cos, sin
|
|
>>> from sympy.plotting import plot3d_parametric_surface
|
|
>>> u, v = symbols('u v')
|
|
|
|
Single plot.
|
|
|
|
.. plot::
|
|
:context: close-figs
|
|
:format: doctest
|
|
:include-source: True
|
|
|
|
>>> plot3d_parametric_surface(cos(u + v), sin(u - v), u - v,
|
|
... (u, -5, 5), (v, -5, 5))
|
|
Plot object containing:
|
|
[0]: parametric cartesian surface: (cos(u + v), sin(u - v), u - v) for u over (-5.0, 5.0) and v over (-5.0, 5.0)
|
|
|
|
|
|
See Also
|
|
========
|
|
|
|
Plot, ParametricSurfaceSeries
|
|
|
|
"""
|
|
|
|
args = list(map(sympify, args))
|
|
series = []
|
|
plot_expr = check_arguments(args, 3, 2)
|
|
series = [ParametricSurfaceSeries(*arg, **kwargs) for arg in plot_expr]
|
|
kwargs.setdefault("xlabel", "x")
|
|
kwargs.setdefault("ylabel", "y")
|
|
kwargs.setdefault("zlabel", "z")
|
|
plots = Plot(*series, **kwargs)
|
|
if show:
|
|
plots.show()
|
|
return plots
|
|
|
|
def plot_contour(*args, show=True, **kwargs):
|
|
"""
|
|
Draws contour plot of a function
|
|
|
|
Usage
|
|
=====
|
|
|
|
Single plot
|
|
|
|
``plot_contour(expr, range_x, range_y, **kwargs)``
|
|
|
|
If the ranges are not specified, then a default range of (-10, 10) is used.
|
|
|
|
Multiple plot with the same range.
|
|
|
|
``plot_contour(expr1, expr2, range_x, range_y, **kwargs)``
|
|
|
|
If the ranges are not specified, then a default range of (-10, 10) is used.
|
|
|
|
Multiple plots with different ranges.
|
|
|
|
``plot_contour((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)``
|
|
|
|
Ranges have to be specified for every expression.
|
|
|
|
Default range may change in the future if a more advanced default range
|
|
detection algorithm is implemented.
|
|
|
|
Arguments
|
|
=========
|
|
|
|
``expr`` : Expression representing the function along x.
|
|
|
|
``range_x``: (x, 0, 5), A 3-tuple denoting the range of the x
|
|
variable.
|
|
|
|
``range_y``: (y, 0, 5), A 3-tuple denoting the range of the y
|
|
variable.
|
|
|
|
Keyword Arguments
|
|
=================
|
|
|
|
Arguments for ``ContourSeries`` class:
|
|
|
|
``nb_of_points_x``: int. The x range is sampled uniformly at
|
|
``nb_of_points_x`` of points.
|
|
|
|
``nb_of_points_y``: int. The y range is sampled uniformly at
|
|
``nb_of_points_y`` of points.
|
|
|
|
Aesthetics:
|
|
|
|
``surface_color``: Function which returns a float. Specifies the color for
|
|
the surface of the plot. See ``sympy.plotting.Plot`` for more details.
|
|
|
|
If there are multiple plots, then the same series arguments are applied to
|
|
all the plots. If you want to set these options separately, you can index
|
|
the returned ``Plot`` object and set it.
|
|
|
|
Arguments for ``Plot`` class:
|
|
|
|
``title`` : str. Title of the plot.
|
|
``size`` : (float, float), optional
|
|
A tuple in the form (width, height) in inches to specify the size of
|
|
the overall figure. The default value is set to ``None``, meaning
|
|
the size will be set by the default backend.
|
|
|
|
See Also
|
|
========
|
|
|
|
Plot, ContourSeries
|
|
|
|
"""
|
|
|
|
args = list(map(sympify, args))
|
|
plot_expr = check_arguments(args, 1, 2)
|
|
series = [ContourSeries(*arg) for arg in plot_expr]
|
|
plot_contours = Plot(*series, **kwargs)
|
|
if len(plot_expr[0].free_symbols) > 2:
|
|
raise ValueError('Contour Plot cannot Plot for more than two variables.')
|
|
if show:
|
|
plot_contours.show()
|
|
return plot_contours
|
|
|
|
def check_arguments(args, expr_len, nb_of_free_symbols):
|
|
"""
|
|
Checks the arguments and converts into tuples of the
|
|
form (exprs, ranges).
|
|
|
|
Examples
|
|
========
|
|
|
|
.. plot::
|
|
:context: reset
|
|
:format: doctest
|
|
:include-source: True
|
|
|
|
>>> from sympy import cos, sin, symbols
|
|
>>> from sympy.plotting.plot import check_arguments
|
|
>>> x = symbols('x')
|
|
>>> check_arguments([cos(x), sin(x)], 2, 1)
|
|
[(cos(x), sin(x), (x, -10, 10))]
|
|
|
|
>>> check_arguments([x, x**2], 1, 1)
|
|
[(x, (x, -10, 10)), (x**2, (x, -10, 10))]
|
|
"""
|
|
if not args:
|
|
return []
|
|
if expr_len > 1 and isinstance(args[0], Expr):
|
|
# Multiple expressions same range.
|
|
# The arguments are tuples when the expression length is
|
|
# greater than 1.
|
|
if len(args) < expr_len:
|
|
raise ValueError("len(args) should not be less than expr_len")
|
|
for i in range(len(args)):
|
|
if isinstance(args[i], Tuple):
|
|
break
|
|
else:
|
|
i = len(args) + 1
|
|
|
|
exprs = Tuple(*args[:i])
|
|
free_symbols = list(set().union(*[e.free_symbols for e in exprs]))
|
|
if len(args) == expr_len + nb_of_free_symbols:
|
|
#Ranges given
|
|
plots = [exprs + Tuple(*args[expr_len:])]
|
|
else:
|
|
default_range = Tuple(-10, 10)
|
|
ranges = []
|
|
for symbol in free_symbols:
|
|
ranges.append(Tuple(symbol) + default_range)
|
|
|
|
for i in range(len(free_symbols) - nb_of_free_symbols):
|
|
ranges.append(Tuple(Dummy()) + default_range)
|
|
plots = [exprs + Tuple(*ranges)]
|
|
return plots
|
|
|
|
if isinstance(args[0], Expr) or (isinstance(args[0], Tuple) and
|
|
len(args[0]) == expr_len and
|
|
expr_len != 3):
|
|
# Cannot handle expressions with number of expression = 3. It is
|
|
# not possible to differentiate between expressions and ranges.
|
|
#Series of plots with same range
|
|
for i in range(len(args)):
|
|
if isinstance(args[i], Tuple) and len(args[i]) != expr_len:
|
|
break
|
|
if not isinstance(args[i], Tuple):
|
|
args[i] = Tuple(args[i])
|
|
else:
|
|
i = len(args) + 1
|
|
|
|
exprs = args[:i]
|
|
assert all(isinstance(e, Expr) for expr in exprs for e in expr)
|
|
free_symbols = list(set().union(*[e.free_symbols for expr in exprs
|
|
for e in expr]))
|
|
|
|
if len(free_symbols) > nb_of_free_symbols:
|
|
raise ValueError("The number of free_symbols in the expression "
|
|
"is greater than %d" % nb_of_free_symbols)
|
|
if len(args) == i + nb_of_free_symbols and isinstance(args[i], Tuple):
|
|
ranges = Tuple(*[range_expr for range_expr in args[
|
|
i:i + nb_of_free_symbols]])
|
|
plots = [expr + ranges for expr in exprs]
|
|
return plots
|
|
else:
|
|
# Use default ranges.
|
|
default_range = Tuple(-10, 10)
|
|
ranges = []
|
|
for symbol in free_symbols:
|
|
ranges.append(Tuple(symbol) + default_range)
|
|
|
|
for i in range(nb_of_free_symbols - len(free_symbols)):
|
|
ranges.append(Tuple(Dummy()) + default_range)
|
|
ranges = Tuple(*ranges)
|
|
plots = [expr + ranges for expr in exprs]
|
|
return plots
|
|
|
|
elif isinstance(args[0], Tuple) and len(args[0]) == expr_len + nb_of_free_symbols:
|
|
# Multiple plots with different ranges.
|
|
for arg in args:
|
|
for i in range(expr_len):
|
|
if not isinstance(arg[i], Expr):
|
|
raise ValueError("Expected an expression, given %s" %
|
|
str(arg[i]))
|
|
for i in range(nb_of_free_symbols):
|
|
if not len(arg[i + expr_len]) == 3:
|
|
raise ValueError("The ranges should be a tuple of "
|
|
"length 3, got %s" % str(arg[i + expr_len]))
|
|
return args
|