238 lines
7.6 KiB
Python
238 lines
7.6 KiB
Python
from sympy import S
|
|
from sympy.core.basic import Basic
|
|
from sympy.core.containers import Tuple
|
|
from sympy.core.function import Lambda
|
|
from sympy.core.logic import fuzzy_bool
|
|
from sympy.core.relational import Eq
|
|
from sympy.core.symbol import Dummy
|
|
from sympy.core.sympify import _sympify
|
|
from sympy.logic.boolalg import And, as_Boolean
|
|
from sympy.utilities.iterables import sift
|
|
from sympy.utilities.exceptions import SymPyDeprecationWarning
|
|
|
|
from .contains import Contains
|
|
from .sets import Set, EmptySet, Union, FiniteSet
|
|
|
|
|
|
adummy = Dummy('conditionset')
|
|
|
|
|
|
class ConditionSet(Set):
|
|
"""
|
|
Set of elements which satisfies a given condition.
|
|
|
|
{x | condition(x) is True for x in S}
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Symbol, S, ConditionSet, pi, Eq, sin, Interval
|
|
>>> from sympy.abc import x, y, z
|
|
|
|
>>> sin_sols = ConditionSet(x, Eq(sin(x), 0), Interval(0, 2*pi))
|
|
>>> 2*pi in sin_sols
|
|
True
|
|
>>> pi/2 in sin_sols
|
|
False
|
|
>>> 3*pi in sin_sols
|
|
False
|
|
>>> 5 in ConditionSet(x, x**2 > 4, S.Reals)
|
|
True
|
|
|
|
If the value is not in the base set, the result is false:
|
|
|
|
>>> 5 in ConditionSet(x, x**2 > 4, Interval(2, 4))
|
|
False
|
|
|
|
Notes
|
|
=====
|
|
|
|
Symbols with assumptions should be avoided or else the
|
|
condition may evaluate without consideration of the set:
|
|
|
|
>>> n = Symbol('n', negative=True)
|
|
>>> cond = (n > 0); cond
|
|
False
|
|
>>> ConditionSet(n, cond, S.Integers)
|
|
EmptySet
|
|
|
|
Only free symbols can be changed by using `subs`:
|
|
|
|
>>> c = ConditionSet(x, x < 1, {x, z})
|
|
>>> c.subs(x, y)
|
|
ConditionSet(x, x < 1, {y, z})
|
|
|
|
To check if ``pi`` is in ``c`` use:
|
|
|
|
>>> pi in c
|
|
False
|
|
|
|
If no base set is specified, the universal set is implied:
|
|
|
|
>>> ConditionSet(x, x < 1).base_set
|
|
UniversalSet
|
|
|
|
Only symbols or symbol-like expressions can be used:
|
|
|
|
>>> ConditionSet(x + 1, x + 1 < 1, S.Integers)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: non-symbol dummy not recognized in condition
|
|
|
|
When the base set is a ConditionSet, the symbols will be
|
|
unified if possible with preference for the outermost symbols:
|
|
|
|
>>> ConditionSet(x, x < y, ConditionSet(z, z + y < 2, S.Integers))
|
|
ConditionSet(x, (x < y) & (x + y < 2), Integers)
|
|
|
|
"""
|
|
def __new__(cls, sym, condition, base_set=S.UniversalSet):
|
|
from sympy.core.function import BadSignatureError
|
|
from sympy.utilities.iterables import flatten, has_dups
|
|
sym = _sympify(sym)
|
|
flat = flatten([sym])
|
|
if has_dups(flat):
|
|
raise BadSignatureError("Duplicate symbols detected")
|
|
base_set = _sympify(base_set)
|
|
if not isinstance(base_set, Set):
|
|
raise TypeError(
|
|
'base set should be a Set object, not %s' % base_set)
|
|
condition = _sympify(condition)
|
|
|
|
if isinstance(condition, FiniteSet):
|
|
condition_orig = condition
|
|
temp = (Eq(lhs, 0) for lhs in condition)
|
|
condition = And(*temp)
|
|
SymPyDeprecationWarning(
|
|
feature="Using {} for condition".format(condition_orig),
|
|
issue=17651,
|
|
deprecated_since_version='1.5',
|
|
useinstead="{} for condition".format(condition)
|
|
).warn()
|
|
|
|
condition = as_Boolean(condition)
|
|
|
|
if condition is S.true:
|
|
return base_set
|
|
|
|
if condition is S.false:
|
|
return S.EmptySet
|
|
|
|
if isinstance(base_set, EmptySet):
|
|
return base_set
|
|
|
|
# no simple answers, so now check syms
|
|
for i in flat:
|
|
if not getattr(i, '_diff_wrt', False):
|
|
raise ValueError('`%s` is not symbol-like' % i)
|
|
|
|
if base_set.contains(sym) is S.false:
|
|
raise TypeError('sym `%s` is not in base_set `%s`' % (sym, base_set))
|
|
|
|
know = None
|
|
if isinstance(base_set, FiniteSet):
|
|
sifted = sift(
|
|
base_set, lambda _: fuzzy_bool(condition.subs(sym, _)))
|
|
if sifted[None]:
|
|
know = FiniteSet(*sifted[True])
|
|
base_set = FiniteSet(*sifted[None])
|
|
else:
|
|
return FiniteSet(*sifted[True])
|
|
|
|
if isinstance(base_set, cls):
|
|
s, c, b = base_set.args
|
|
def sig(s):
|
|
return cls(s, Eq(adummy, 0)).as_dummy().sym
|
|
sa, sb = map(sig, (sym, s))
|
|
if sa != sb:
|
|
raise BadSignatureError('sym does not match sym of base set')
|
|
reps = dict(zip(flatten([sym]), flatten([s])))
|
|
if s == sym:
|
|
condition = And(condition, c)
|
|
base_set = b
|
|
elif not c.free_symbols & sym.free_symbols:
|
|
reps = {v: k for k, v in reps.items()}
|
|
condition = And(condition, c.xreplace(reps))
|
|
base_set = b
|
|
elif not condition.free_symbols & s.free_symbols:
|
|
sym = sym.xreplace(reps)
|
|
condition = And(condition.xreplace(reps), c)
|
|
base_set = b
|
|
|
|
# flatten ConditionSet(Contains(ConditionSet())) expressions
|
|
if isinstance(condition, Contains) and (sym == condition.args[0]):
|
|
if isinstance(condition.args[1], Set):
|
|
return condition.args[1].intersect(base_set)
|
|
|
|
rv = Basic.__new__(cls, sym, condition, base_set)
|
|
return rv if know is None else Union(know, rv)
|
|
|
|
sym = property(lambda self: self.args[0])
|
|
condition = property(lambda self: self.args[1])
|
|
base_set = property(lambda self: self.args[2])
|
|
|
|
@property
|
|
def free_symbols(self):
|
|
cond_syms = self.condition.free_symbols - self.sym.free_symbols
|
|
return cond_syms | self.base_set.free_symbols
|
|
|
|
@property
|
|
def bound_symbols(self):
|
|
from sympy.utilities.iterables import flatten
|
|
return flatten([self.sym])
|
|
|
|
def _contains(self, other):
|
|
def ok_sig(a, b):
|
|
tuples = [isinstance(i, Tuple) for i in (a, b)]
|
|
c = tuples.count(True)
|
|
if c == 1:
|
|
return False
|
|
if c == 0:
|
|
return True
|
|
return len(a) == len(b) and all(
|
|
ok_sig(i, j) for i, j in zip(a, b))
|
|
if not ok_sig(self.sym, other):
|
|
return S.false
|
|
|
|
# try doing base_cond first and return
|
|
# False immediately if it is False
|
|
base_cond = Contains(other, self.base_set)
|
|
if base_cond is S.false:
|
|
return S.false
|
|
|
|
# Substitute other into condition. This could raise e.g. for
|
|
# ConditionSet(x, 1/x >= 0, Reals).contains(0)
|
|
lamda = Lambda((self.sym,), self.condition)
|
|
try:
|
|
lambda_cond = lamda(other)
|
|
except TypeError:
|
|
return Contains(other, self, evaluate=False)
|
|
else:
|
|
return And(base_cond, lambda_cond)
|
|
|
|
def as_relational(self, other):
|
|
f = Lambda(self.sym, self.condition)
|
|
if isinstance(self.sym, Tuple):
|
|
f = f(*other)
|
|
else:
|
|
f = f(other)
|
|
return And(f, self.base_set.contains(other))
|
|
|
|
def _eval_subs(self, old, new):
|
|
sym, cond, base = self.args
|
|
dsym = sym.subs(old, adummy)
|
|
insym = dsym.has(adummy)
|
|
# prioritize changing a symbol in the base
|
|
newbase = base.subs(old, new)
|
|
if newbase != base:
|
|
if not insym:
|
|
cond = cond.subs(old, new)
|
|
return self.func(sym, cond, newbase)
|
|
if insym:
|
|
pass # no change of bound symbols via subs
|
|
elif getattr(new, '_diff_wrt', False):
|
|
cond = cond.subs(old, new)
|
|
else:
|
|
pass # let error about the symbol raise from __new__
|
|
return self.func(sym, cond, base)
|