515 lines
18 KiB
Python
515 lines
18 KiB
Python
from sympy.core import Function, S, Mul, Pow, Add
|
|
from sympy.core.compatibility import ordered, default_sort_key
|
|
from sympy.core.function import count_ops, expand_func
|
|
from sympy.functions.combinatorial.factorials import binomial
|
|
from sympy.functions import gamma, sqrt, sin
|
|
from sympy.polys import factor, cancel
|
|
|
|
from sympy.utilities.iterables import sift, uniq
|
|
|
|
|
|
def gammasimp(expr):
|
|
r"""
|
|
Simplify expressions with gamma functions.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
This function takes as input an expression containing gamma
|
|
functions or functions that can be rewritten in terms of gamma
|
|
functions and tries to minimize the number of those functions and
|
|
reduce the size of their arguments.
|
|
|
|
The algorithm works by rewriting all gamma functions as expressions
|
|
involving rising factorials (Pochhammer symbols) and applies
|
|
recurrence relations and other transformations applicable to rising
|
|
factorials, to reduce their arguments, possibly letting the resulting
|
|
rising factorial to cancel. Rising factorials with the second argument
|
|
being an integer are expanded into polynomial forms and finally all
|
|
other rising factorial are rewritten in terms of gamma functions.
|
|
|
|
Then the following two steps are performed.
|
|
|
|
1. Reduce the number of gammas by applying the reflection theorem
|
|
gamma(x)*gamma(1-x) == pi/sin(pi*x).
|
|
2. Reduce the number of gammas by applying the multiplication theorem
|
|
gamma(x)*gamma(x+1/n)*...*gamma(x+(n-1)/n) == C*gamma(n*x).
|
|
|
|
It then reduces the number of prefactors by absorbing them into gammas
|
|
where possible and expands gammas with rational argument.
|
|
|
|
All transformation rules can be found (or was derived from) here:
|
|
|
|
.. [1] http://functions.wolfram.com/GammaBetaErf/Pochhammer/17/01/02/
|
|
.. [2] http://functions.wolfram.com/GammaBetaErf/Pochhammer/27/01/0005/
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.simplify import gammasimp
|
|
>>> from sympy import gamma, Symbol
|
|
>>> from sympy.abc import x
|
|
>>> n = Symbol('n', integer = True)
|
|
|
|
>>> gammasimp(gamma(x)/gamma(x - 3))
|
|
(x - 3)*(x - 2)*(x - 1)
|
|
>>> gammasimp(gamma(n + 3))
|
|
gamma(n + 3)
|
|
|
|
"""
|
|
|
|
expr = expr.rewrite(gamma)
|
|
return _gammasimp(expr, as_comb = False)
|
|
|
|
|
|
def _gammasimp(expr, as_comb):
|
|
"""
|
|
Helper function for gammasimp and combsimp.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
Simplifies expressions written in terms of gamma function. If
|
|
as_comb is True, it tries to preserve integer arguments. See
|
|
docstring of gammasimp for more information. This was part of
|
|
combsimp() in combsimp.py.
|
|
"""
|
|
|
|
expr = expr.replace(gamma,
|
|
lambda n: _rf(1, (n - 1).expand()))
|
|
|
|
if as_comb:
|
|
expr = expr.replace(_rf,
|
|
lambda a, b: gamma(b + 1))
|
|
else:
|
|
expr = expr.replace(_rf,
|
|
lambda a, b: gamma(a + b)/gamma(a))
|
|
|
|
def rule(n, k):
|
|
coeff, rewrite = S.One, False
|
|
|
|
cn, _n = n.as_coeff_Add()
|
|
|
|
if _n and cn.is_Integer and cn:
|
|
coeff *= _rf(_n + 1, cn)/_rf(_n - k + 1, cn)
|
|
rewrite = True
|
|
n = _n
|
|
|
|
# this sort of binomial has already been removed by
|
|
# rising factorials but is left here in case the order
|
|
# of rule application is changed
|
|
if k.is_Add:
|
|
ck, _k = k.as_coeff_Add()
|
|
if _k and ck.is_Integer and ck:
|
|
coeff *= _rf(n - ck - _k + 1, ck)/_rf(_k + 1, ck)
|
|
rewrite = True
|
|
k = _k
|
|
|
|
if count_ops(k) > count_ops(n - k):
|
|
rewrite = True
|
|
k = n - k
|
|
|
|
if rewrite:
|
|
return coeff*binomial(n, k)
|
|
|
|
expr = expr.replace(binomial, rule)
|
|
|
|
def rule_gamma(expr, level=0):
|
|
""" Simplify products of gamma functions further. """
|
|
|
|
if expr.is_Atom:
|
|
return expr
|
|
|
|
def gamma_rat(x):
|
|
# helper to simplify ratios of gammas
|
|
was = x.count(gamma)
|
|
xx = x.replace(gamma, lambda n: _rf(1, (n - 1).expand()
|
|
).replace(_rf, lambda a, b: gamma(a + b)/gamma(a)))
|
|
if xx.count(gamma) < was:
|
|
x = xx
|
|
return x
|
|
|
|
def gamma_factor(x):
|
|
# return True if there is a gamma factor in shallow args
|
|
if isinstance(x, gamma):
|
|
return True
|
|
if x.is_Add or x.is_Mul:
|
|
return any(gamma_factor(xi) for xi in x.args)
|
|
if x.is_Pow and (x.exp.is_integer or x.base.is_positive):
|
|
return gamma_factor(x.base)
|
|
return False
|
|
|
|
# recursion step
|
|
if level == 0:
|
|
expr = expr.func(*[rule_gamma(x, level + 1) for x in expr.args])
|
|
level += 1
|
|
|
|
if not expr.is_Mul:
|
|
return expr
|
|
|
|
# non-commutative step
|
|
if level == 1:
|
|
args, nc = expr.args_cnc()
|
|
if not args:
|
|
return expr
|
|
if nc:
|
|
return rule_gamma(Mul._from_args(args), level + 1)*Mul._from_args(nc)
|
|
level += 1
|
|
|
|
# pure gamma handling, not factor absorption
|
|
if level == 2:
|
|
T, F = sift(expr.args, gamma_factor, binary=True)
|
|
gamma_ind = Mul(*F)
|
|
d = Mul(*T)
|
|
|
|
nd, dd = d.as_numer_denom()
|
|
for ipass in range(2):
|
|
args = list(ordered(Mul.make_args(nd)))
|
|
for i, ni in enumerate(args):
|
|
if ni.is_Add:
|
|
ni, dd = Add(*[
|
|
rule_gamma(gamma_rat(a/dd), level + 1) for a in ni.args]
|
|
).as_numer_denom()
|
|
args[i] = ni
|
|
if not dd.has(gamma):
|
|
break
|
|
nd = Mul(*args)
|
|
if ipass == 0 and not gamma_factor(nd):
|
|
break
|
|
nd, dd = dd, nd # now process in reversed order
|
|
expr = gamma_ind*nd/dd
|
|
if not (expr.is_Mul and (gamma_factor(dd) or gamma_factor(nd))):
|
|
return expr
|
|
level += 1
|
|
|
|
# iteration until constant
|
|
if level == 3:
|
|
while True:
|
|
was = expr
|
|
expr = rule_gamma(expr, 4)
|
|
if expr == was:
|
|
return expr
|
|
|
|
numer_gammas = []
|
|
denom_gammas = []
|
|
numer_others = []
|
|
denom_others = []
|
|
def explicate(p):
|
|
if p is S.One:
|
|
return None, []
|
|
b, e = p.as_base_exp()
|
|
if e.is_Integer:
|
|
if isinstance(b, gamma):
|
|
return True, [b.args[0]]*e
|
|
else:
|
|
return False, [b]*e
|
|
else:
|
|
return False, [p]
|
|
|
|
newargs = list(ordered(expr.args))
|
|
while newargs:
|
|
n, d = newargs.pop().as_numer_denom()
|
|
isg, l = explicate(n)
|
|
if isg:
|
|
numer_gammas.extend(l)
|
|
elif isg is False:
|
|
numer_others.extend(l)
|
|
isg, l = explicate(d)
|
|
if isg:
|
|
denom_gammas.extend(l)
|
|
elif isg is False:
|
|
denom_others.extend(l)
|
|
|
|
# =========== level 2 work: pure gamma manipulation =========
|
|
|
|
if not as_comb:
|
|
# Try to reduce the number of gamma factors by applying the
|
|
# reflection formula gamma(x)*gamma(1-x) = pi/sin(pi*x)
|
|
for gammas, numer, denom in [(
|
|
numer_gammas, numer_others, denom_others),
|
|
(denom_gammas, denom_others, numer_others)]:
|
|
new = []
|
|
while gammas:
|
|
g1 = gammas.pop()
|
|
if g1.is_integer:
|
|
new.append(g1)
|
|
continue
|
|
for i, g2 in enumerate(gammas):
|
|
n = g1 + g2 - 1
|
|
if not n.is_Integer:
|
|
continue
|
|
numer.append(S.Pi)
|
|
denom.append(sin(S.Pi*g1))
|
|
gammas.pop(i)
|
|
if n > 0:
|
|
for k in range(n):
|
|
numer.append(1 - g1 + k)
|
|
elif n < 0:
|
|
for k in range(-n):
|
|
denom.append(-g1 - k)
|
|
break
|
|
else:
|
|
new.append(g1)
|
|
# /!\ updating IN PLACE
|
|
gammas[:] = new
|
|
|
|
# Try to reduce the number of gammas by using the duplication
|
|
# theorem to cancel an upper and lower: gamma(2*s)/gamma(s) =
|
|
# 2**(2*s + 1)/(4*sqrt(pi))*gamma(s + 1/2). Although this could
|
|
# be done with higher argument ratios like gamma(3*x)/gamma(x),
|
|
# this would not reduce the number of gammas as in this case.
|
|
for ng, dg, no, do in [(numer_gammas, denom_gammas, numer_others,
|
|
denom_others),
|
|
(denom_gammas, numer_gammas, denom_others,
|
|
numer_others)]:
|
|
|
|
while True:
|
|
for x in ng:
|
|
for y in dg:
|
|
n = x - 2*y
|
|
if n.is_Integer:
|
|
break
|
|
else:
|
|
continue
|
|
break
|
|
else:
|
|
break
|
|
ng.remove(x)
|
|
dg.remove(y)
|
|
if n > 0:
|
|
for k in range(n):
|
|
no.append(2*y + k)
|
|
elif n < 0:
|
|
for k in range(-n):
|
|
do.append(2*y - 1 - k)
|
|
ng.append(y + S.Half)
|
|
no.append(2**(2*y - 1))
|
|
do.append(sqrt(S.Pi))
|
|
|
|
# Try to reduce the number of gamma factors by applying the
|
|
# multiplication theorem (used when n gammas with args differing
|
|
# by 1/n mod 1 are encountered).
|
|
#
|
|
# run of 2 with args differing by 1/2
|
|
#
|
|
# >>> gammasimp(gamma(x)*gamma(x+S.Half))
|
|
# 2*sqrt(2)*2**(-2*x - 1/2)*sqrt(pi)*gamma(2*x)
|
|
#
|
|
# run of 3 args differing by 1/3 (mod 1)
|
|
#
|
|
# >>> gammasimp(gamma(x)*gamma(x+S(1)/3)*gamma(x+S(2)/3))
|
|
# 6*3**(-3*x - 1/2)*pi*gamma(3*x)
|
|
# >>> gammasimp(gamma(x)*gamma(x+S(1)/3)*gamma(x+S(5)/3))
|
|
# 2*3**(-3*x - 1/2)*pi*(3*x + 2)*gamma(3*x)
|
|
#
|
|
def _run(coeffs):
|
|
# find runs in coeffs such that the difference in terms (mod 1)
|
|
# of t1, t2, ..., tn is 1/n
|
|
u = list(uniq(coeffs))
|
|
for i in range(len(u)):
|
|
dj = ([((u[j] - u[i]) % 1, j) for j in range(i + 1, len(u))])
|
|
for one, j in dj:
|
|
if one.p == 1 and one.q != 1:
|
|
n = one.q
|
|
got = [i]
|
|
get = list(range(1, n))
|
|
for d, j in dj:
|
|
m = n*d
|
|
if m.is_Integer and m in get:
|
|
get.remove(m)
|
|
got.append(j)
|
|
if not get:
|
|
break
|
|
else:
|
|
continue
|
|
for i, j in enumerate(got):
|
|
c = u[j]
|
|
coeffs.remove(c)
|
|
got[i] = c
|
|
return one.q, got[0], got[1:]
|
|
|
|
def _mult_thm(gammas, numer, denom):
|
|
# pull off and analyze the leading coefficient from each gamma arg
|
|
# looking for runs in those Rationals
|
|
|
|
# expr -> coeff + resid -> rats[resid] = coeff
|
|
rats = {}
|
|
for g in gammas:
|
|
c, resid = g.as_coeff_Add()
|
|
rats.setdefault(resid, []).append(c)
|
|
|
|
# look for runs in Rationals for each resid
|
|
keys = sorted(rats, key=default_sort_key)
|
|
for resid in keys:
|
|
coeffs = list(sorted(rats[resid]))
|
|
new = []
|
|
while True:
|
|
run = _run(coeffs)
|
|
if run is None:
|
|
break
|
|
|
|
# process the sequence that was found:
|
|
# 1) convert all the gamma functions to have the right
|
|
# argument (could be off by an integer)
|
|
# 2) append the factors corresponding to the theorem
|
|
# 3) append the new gamma function
|
|
|
|
n, ui, other = run
|
|
|
|
# (1)
|
|
for u in other:
|
|
con = resid + u - 1
|
|
for k in range(int(u - ui)):
|
|
numer.append(con - k)
|
|
|
|
con = n*(resid + ui) # for (2) and (3)
|
|
|
|
# (2)
|
|
numer.append((2*S.Pi)**(S(n - 1)/2)*
|
|
n**(S.Half - con))
|
|
# (3)
|
|
new.append(con)
|
|
|
|
# restore resid to coeffs
|
|
rats[resid] = [resid + c for c in coeffs] + new
|
|
|
|
# rebuild the gamma arguments
|
|
g = []
|
|
for resid in keys:
|
|
g += rats[resid]
|
|
# /!\ updating IN PLACE
|
|
gammas[:] = g
|
|
|
|
for l, numer, denom in [(numer_gammas, numer_others, denom_others),
|
|
(denom_gammas, denom_others, numer_others)]:
|
|
_mult_thm(l, numer, denom)
|
|
|
|
# =========== level >= 2 work: factor absorption =========
|
|
|
|
if level >= 2:
|
|
# Try to absorb factors into the gammas: x*gamma(x) -> gamma(x + 1)
|
|
# and gamma(x)/(x - 1) -> gamma(x - 1)
|
|
# This code (in particular repeated calls to find_fuzzy) can be very
|
|
# slow.
|
|
def find_fuzzy(l, x):
|
|
if not l:
|
|
return
|
|
S1, T1 = compute_ST(x)
|
|
for y in l:
|
|
S2, T2 = inv[y]
|
|
if T1 != T2 or (not S1.intersection(S2) and
|
|
(S1 != set() or S2 != set())):
|
|
continue
|
|
# XXX we want some simplification (e.g. cancel or
|
|
# simplify) but no matter what it's slow.
|
|
a = len(cancel(x/y).free_symbols)
|
|
b = len(x.free_symbols)
|
|
c = len(y.free_symbols)
|
|
# TODO is there a better heuristic?
|
|
if a == 0 and (b > 0 or c > 0):
|
|
return y
|
|
|
|
# We thus try to avoid expensive calls by building the following
|
|
# "invariants": For every factor or gamma function argument
|
|
# - the set of free symbols S
|
|
# - the set of functional components T
|
|
# We will only try to absorb if T1==T2 and (S1 intersect S2 != emptyset
|
|
# or S1 == S2 == emptyset)
|
|
inv = {}
|
|
|
|
def compute_ST(expr):
|
|
if expr in inv:
|
|
return inv[expr]
|
|
return (expr.free_symbols, expr.atoms(Function).union(
|
|
{e.exp for e in expr.atoms(Pow)}))
|
|
|
|
def update_ST(expr):
|
|
inv[expr] = compute_ST(expr)
|
|
for expr in numer_gammas + denom_gammas + numer_others + denom_others:
|
|
update_ST(expr)
|
|
|
|
for gammas, numer, denom in [(
|
|
numer_gammas, numer_others, denom_others),
|
|
(denom_gammas, denom_others, numer_others)]:
|
|
new = []
|
|
while gammas:
|
|
g = gammas.pop()
|
|
cont = True
|
|
while cont:
|
|
cont = False
|
|
y = find_fuzzy(numer, g)
|
|
if y is not None:
|
|
numer.remove(y)
|
|
if y != g:
|
|
numer.append(y/g)
|
|
update_ST(y/g)
|
|
g += 1
|
|
cont = True
|
|
y = find_fuzzy(denom, g - 1)
|
|
if y is not None:
|
|
denom.remove(y)
|
|
if y != g - 1:
|
|
numer.append((g - 1)/y)
|
|
update_ST((g - 1)/y)
|
|
g -= 1
|
|
cont = True
|
|
new.append(g)
|
|
# /!\ updating IN PLACE
|
|
gammas[:] = new
|
|
|
|
# =========== rebuild expr ==================================
|
|
|
|
return Mul(*[gamma(g) for g in numer_gammas]) \
|
|
/ Mul(*[gamma(g) for g in denom_gammas]) \
|
|
* Mul(*numer_others) / Mul(*denom_others)
|
|
|
|
# (for some reason we cannot use Basic.replace in this case)
|
|
was = factor(expr)
|
|
expr = rule_gamma(was)
|
|
if expr != was:
|
|
expr = factor(expr)
|
|
|
|
expr = expr.replace(gamma,
|
|
lambda n: expand_func(gamma(n)) if n.is_Rational else gamma(n))
|
|
|
|
return expr
|
|
|
|
|
|
class _rf(Function):
|
|
@classmethod
|
|
def eval(cls, a, b):
|
|
if b.is_Integer:
|
|
if not b:
|
|
return S.One
|
|
|
|
n, result = int(b), S.One
|
|
|
|
if n > 0:
|
|
for i in range(n):
|
|
result *= a + i
|
|
|
|
return result
|
|
elif n < 0:
|
|
for i in range(1, -n + 1):
|
|
result *= a - i
|
|
|
|
return 1/result
|
|
else:
|
|
if b.is_Add:
|
|
c, _b = b.as_coeff_Add()
|
|
|
|
if c.is_Integer:
|
|
if c > 0:
|
|
return _rf(a, _b)*_rf(a + _b, c)
|
|
elif c < 0:
|
|
return _rf(a, _b)/_rf(a + _b + c, -c)
|
|
|
|
if a.is_Add:
|
|
c, _a = a.as_coeff_Add()
|
|
|
|
if c.is_Integer:
|
|
if c > 0:
|
|
return _rf(_a, b)*_rf(_a + b, c)/_rf(_a, c)
|
|
elif c < 0:
|
|
return _rf(_a, b)*_rf(_a + c, -c)/_rf(_a + b + c, -c)
|