Generateurv2/backend/env/lib/python3.10/site-packages/sympy/vector/basisdependent.py
2022-06-24 17:14:37 +02:00

359 lines
11 KiB
Python

from typing import Any, Dict
from sympy.simplify import simplify as simp, trigsimp as tsimp
from sympy.core.decorators import call_highest_priority, _sympifyit
from sympy.core.assumptions import StdFactKB
from sympy import factor as fctr, diff as df, Integral
from sympy.core import S, Add, Mul
from sympy.core.expr import Expr
class BasisDependent(Expr):
"""
Super class containing functionality common to vectors and
dyadics.
Named so because the representation of these quantities in
sympy.vector is dependent on the basis they are expressed in.
"""
@call_highest_priority('__radd__')
def __add__(self, other):
return self._add_func(self, other)
@call_highest_priority('__add__')
def __radd__(self, other):
return self._add_func(other, self)
@call_highest_priority('__rsub__')
def __sub__(self, other):
return self._add_func(self, -other)
@call_highest_priority('__sub__')
def __rsub__(self, other):
return self._add_func(other, -self)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rmul__')
def __mul__(self, other):
return self._mul_func(self, other)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__mul__')
def __rmul__(self, other):
return self._mul_func(other, self)
def __neg__(self):
return self._mul_func(S.NegativeOne, self)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rtruediv__')
def __truediv__(self, other):
return self._div_helper(other)
@call_highest_priority('__truediv__')
def __rtruediv__(self, other):
return TypeError("Invalid divisor for division")
def evalf(self, n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False):
"""
Implements the SymPy evalf routine for this quantity.
evalf's documentation
=====================
"""
options = {'subs':subs, 'maxn':maxn, 'chop':chop, 'strict':strict,
'quad':quad, 'verbose':verbose}
vec = self.zero
for k, v in self.components.items():
vec += v.evalf(n, **options) * k
return vec
evalf.__doc__ += Expr.evalf.__doc__ # type: ignore
n = evalf
def simplify(self, **kwargs):
"""
Implements the SymPy simplify routine for this quantity.
simplify's documentation
========================
"""
simp_components = [simp(v, **kwargs) * k for
k, v in self.components.items()]
return self._add_func(*simp_components)
simplify.__doc__ += simp.__doc__ # type: ignore
def trigsimp(self, **opts):
"""
Implements the SymPy trigsimp routine, for this quantity.
trigsimp's documentation
========================
"""
trig_components = [tsimp(v, **opts) * k for
k, v in self.components.items()]
return self._add_func(*trig_components)
trigsimp.__doc__ += tsimp.__doc__ # type: ignore
def _eval_simplify(self, **kwargs):
return self.simplify(**kwargs)
def _eval_trigsimp(self, **opts):
return self.trigsimp(**opts)
def _eval_derivative(self, wrt):
return self.diff(wrt)
def _eval_Integral(self, *symbols, **assumptions):
integral_components = [Integral(v, *symbols, **assumptions) * k
for k, v in self.components.items()]
return self._add_func(*integral_components)
def as_numer_denom(self):
"""
Returns the expression as a tuple wrt the following
transformation -
expression -> a/b -> a, b
"""
return self, S.One
def factor(self, *args, **kwargs):
"""
Implements the SymPy factor routine, on the scalar parts
of a basis-dependent expression.
factor's documentation
========================
"""
fctr_components = [fctr(v, *args, **kwargs) * k for
k, v in self.components.items()]
return self._add_func(*fctr_components)
factor.__doc__ += fctr.__doc__ # type: ignore
def as_coeff_Mul(self, rational=False):
"""Efficiently extract the coefficient of a product. """
return (S.One, self)
def as_coeff_add(self, *deps):
"""Efficiently extract the coefficient of a summation. """
l = [x * self.components[x] for x in self.components]
return 0, tuple(l)
def diff(self, *args, **kwargs):
"""
Implements the SymPy diff routine, for vectors.
diff's documentation
========================
"""
for x in args:
if isinstance(x, BasisDependent):
raise TypeError("Invalid arg for differentiation")
diff_components = [df(v, *args, **kwargs) * k for
k, v in self.components.items()]
return self._add_func(*diff_components)
diff.__doc__ += df.__doc__ # type: ignore
def doit(self, **hints):
"""Calls .doit() on each term in the Dyadic"""
doit_components = [self.components[x].doit(**hints) * x
for x in self.components]
return self._add_func(*doit_components)
class BasisDependentAdd(BasisDependent, Add):
"""
Denotes sum of basis dependent quantities such that they cannot
be expressed as base or Mul instances.
"""
def __new__(cls, *args, **options):
components = {}
# Check each arg and simultaneously learn the components
for i, arg in enumerate(args):
if not isinstance(arg, cls._expr_type):
if isinstance(arg, Mul):
arg = cls._mul_func(*(arg.args))
elif isinstance(arg, Add):
arg = cls._add_func(*(arg.args))
else:
raise TypeError(str(arg) +
" cannot be interpreted correctly")
# If argument is zero, ignore
if arg == cls.zero:
continue
# Else, update components accordingly
if hasattr(arg, "components"):
for x in arg.components:
components[x] = components.get(x, 0) + arg.components[x]
temp = list(components.keys())
for x in temp:
if components[x] == 0:
del components[x]
# Handle case of zero vector
if len(components) == 0:
return cls.zero
# Build object
newargs = [x * components[x] for x in components]
obj = super().__new__(cls, *newargs, **options)
if isinstance(obj, Mul):
return cls._mul_func(*obj.args)
assumptions = {'commutative': True}
obj._assumptions = StdFactKB(assumptions)
obj._components = components
obj._sys = (list(components.keys()))[0]._sys
return obj
class BasisDependentMul(BasisDependent, Mul):
"""
Denotes product of base- basis dependent quantity with a scalar.
"""
def __new__(cls, *args, **options):
from sympy.vector import Cross, Dot, Curl, Gradient
count = 0
measure_number = S.One
zeroflag = False
extra_args = []
# Determine the component and check arguments
# Also keep a count to ensure two vectors aren't
# being multiplied
for arg in args:
if isinstance(arg, cls._zero_func):
count += 1
zeroflag = True
elif arg == S.Zero:
zeroflag = True
elif isinstance(arg, (cls._base_func, cls._mul_func)):
count += 1
expr = arg._base_instance
measure_number *= arg._measure_number
elif isinstance(arg, cls._add_func):
count += 1
expr = arg
elif isinstance(arg, (Cross, Dot, Curl, Gradient)):
extra_args.append(arg)
else:
measure_number *= arg
# Make sure incompatible types weren't multiplied
if count > 1:
raise ValueError("Invalid multiplication")
elif count == 0:
return Mul(*args, **options)
# Handle zero vector case
if zeroflag:
return cls.zero
# If one of the args was a VectorAdd, return an
# appropriate VectorAdd instance
if isinstance(expr, cls._add_func):
newargs = [cls._mul_func(measure_number, x) for
x in expr.args]
return cls._add_func(*newargs)
obj = super().__new__(cls, measure_number,
expr._base_instance,
*extra_args,
**options)
if isinstance(obj, Add):
return cls._add_func(*obj.args)
obj._base_instance = expr._base_instance
obj._measure_number = measure_number
assumptions = {'commutative': True}
obj._assumptions = StdFactKB(assumptions)
obj._components = {expr._base_instance: measure_number}
obj._sys = expr._base_instance._sys
return obj
def _sympystr(self, printer):
measure_str = printer._print(self._measure_number)
if ('(' in measure_str or '-' in measure_str or
'+' in measure_str):
measure_str = '(' + measure_str + ')'
return measure_str + '*' + printer._print(self._base_instance)
class BasisDependentZero(BasisDependent):
"""
Class to denote a zero basis dependent instance.
"""
# XXX: Can't type the keys as BaseVector because of cyclic import
# problems.
components = {} # type: Dict[Any, Expr]
def __new__(cls):
obj = super().__new__(cls)
# Pre-compute a specific hash value for the zero vector
# Use the same one always
obj._hash = tuple([S.Zero, cls]).__hash__()
return obj
def __hash__(self):
return self._hash
@call_highest_priority('__req__')
def __eq__(self, other):
return isinstance(other, self._zero_func)
__req__ = __eq__
@call_highest_priority('__radd__')
def __add__(self, other):
if isinstance(other, self._expr_type):
return other
else:
raise TypeError("Invalid argument types for addition")
@call_highest_priority('__add__')
def __radd__(self, other):
if isinstance(other, self._expr_type):
return other
else:
raise TypeError("Invalid argument types for addition")
@call_highest_priority('__rsub__')
def __sub__(self, other):
if isinstance(other, self._expr_type):
return -other
else:
raise TypeError("Invalid argument types for subtraction")
@call_highest_priority('__sub__')
def __rsub__(self, other):
if isinstance(other, self._expr_type):
return other
else:
raise TypeError("Invalid argument types for subtraction")
def __neg__(self):
return self
def normalize(self):
"""
Returns the normalized version of this vector.
"""
return self
def _sympystr(self, printer):
return '0'