Generateurv2/backend/env/lib/python3.10/site-packages/sympy/vector/dyadic.py
2022-06-24 17:14:37 +02:00

282 lines
8.3 KiB
Python

from typing import Type
from sympy.vector.basisdependent import (BasisDependent, BasisDependentAdd,
BasisDependentMul, BasisDependentZero)
from sympy.core import S, Pow
from sympy.core.expr import AtomicExpr
from sympy import ImmutableMatrix as Matrix
import sympy.vector
class Dyadic(BasisDependent):
"""
Super class for all Dyadic-classes.
References
==========
.. [1] https://en.wikipedia.org/wiki/Dyadic_tensor
.. [2] Kane, T., Levinson, D. Dynamics Theory and Applications. 1985
McGraw-Hill
"""
_op_priority = 13.0
_expr_type = None # type: Type[Dyadic]
_mul_func = None # type: Type[Dyadic]
_add_func = None # type: Type[Dyadic]
_zero_func = None # type: Type[Dyadic]
_base_func = None # type: Type[Dyadic]
zero = None # type: DyadicZero
@property
def components(self):
"""
Returns the components of this dyadic in the form of a
Python dictionary mapping BaseDyadic instances to the
corresponding measure numbers.
"""
# The '_components' attribute is defined according to the
# subclass of Dyadic the instance belongs to.
return self._components
def dot(self, other):
"""
Returns the dot product(also called inner product) of this
Dyadic, with another Dyadic or Vector.
If 'other' is a Dyadic, this returns a Dyadic. Else, it returns
a Vector (unless an error is encountered).
Parameters
==========
other : Dyadic/Vector
The other Dyadic or Vector to take the inner product with
Examples
========
>>> from sympy.vector import CoordSys3D
>>> N = CoordSys3D('N')
>>> D1 = N.i.outer(N.j)
>>> D2 = N.j.outer(N.j)
>>> D1.dot(D2)
(N.i|N.j)
>>> D1.dot(N.j)
N.i
"""
Vector = sympy.vector.Vector
if isinstance(other, BasisDependentZero):
return Vector.zero
elif isinstance(other, Vector):
outvec = Vector.zero
for k, v in self.components.items():
vect_dot = k.args[1].dot(other)
outvec += vect_dot * v * k.args[0]
return outvec
elif isinstance(other, Dyadic):
outdyad = Dyadic.zero
for k1, v1 in self.components.items():
for k2, v2 in other.components.items():
vect_dot = k1.args[1].dot(k2.args[0])
outer_product = k1.args[0].outer(k2.args[1])
outdyad += vect_dot * v1 * v2 * outer_product
return outdyad
else:
raise TypeError("Inner product is not defined for " +
str(type(other)) + " and Dyadics.")
def __and__(self, other):
return self.dot(other)
__and__.__doc__ = dot.__doc__
def cross(self, other):
"""
Returns the cross product between this Dyadic, and a Vector, as a
Vector instance.
Parameters
==========
other : Vector
The Vector that we are crossing this Dyadic with
Examples
========
>>> from sympy.vector import CoordSys3D
>>> N = CoordSys3D('N')
>>> d = N.i.outer(N.i)
>>> d.cross(N.j)
(N.i|N.k)
"""
Vector = sympy.vector.Vector
if other == Vector.zero:
return Dyadic.zero
elif isinstance(other, Vector):
outdyad = Dyadic.zero
for k, v in self.components.items():
cross_product = k.args[1].cross(other)
outer = k.args[0].outer(cross_product)
outdyad += v * outer
return outdyad
else:
raise TypeError(str(type(other)) + " not supported for " +
"cross with dyadics")
def __xor__(self, other):
return self.cross(other)
__xor__.__doc__ = cross.__doc__
def to_matrix(self, system, second_system=None):
"""
Returns the matrix form of the dyadic with respect to one or two
coordinate systems.
Parameters
==========
system : CoordSys3D
The coordinate system that the rows and columns of the matrix
correspond to. If a second system is provided, this
only corresponds to the rows of the matrix.
second_system : CoordSys3D, optional, default=None
The coordinate system that the columns of the matrix correspond
to.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> N = CoordSys3D('N')
>>> v = N.i + 2*N.j
>>> d = v.outer(N.i)
>>> d.to_matrix(N)
Matrix([
[1, 0, 0],
[2, 0, 0],
[0, 0, 0]])
>>> from sympy import Symbol
>>> q = Symbol('q')
>>> P = N.orient_new_axis('P', q, N.k)
>>> d.to_matrix(N, P)
Matrix([
[ cos(q), -sin(q), 0],
[2*cos(q), -2*sin(q), 0],
[ 0, 0, 0]])
"""
if second_system is None:
second_system = system
return Matrix([i.dot(self).dot(j) for i in system for j in
second_system]).reshape(3, 3)
def _div_helper(one, other):
""" Helper for division involving dyadics """
if isinstance(one, Dyadic) and isinstance(other, Dyadic):
raise TypeError("Cannot divide two dyadics")
elif isinstance(one, Dyadic):
return DyadicMul(one, Pow(other, S.NegativeOne))
else:
raise TypeError("Cannot divide by a dyadic")
class BaseDyadic(Dyadic, AtomicExpr):
"""
Class to denote a base dyadic tensor component.
"""
def __new__(cls, vector1, vector2):
Vector = sympy.vector.Vector
BaseVector = sympy.vector.BaseVector
VectorZero = sympy.vector.VectorZero
# Verify arguments
if not isinstance(vector1, (BaseVector, VectorZero)) or \
not isinstance(vector2, (BaseVector, VectorZero)):
raise TypeError("BaseDyadic cannot be composed of non-base " +
"vectors")
# Handle special case of zero vector
elif vector1 == Vector.zero or vector2 == Vector.zero:
return Dyadic.zero
# Initialize instance
obj = super().__new__(cls, vector1, vector2)
obj._base_instance = obj
obj._measure_number = 1
obj._components = {obj: S.One}
obj._sys = vector1._sys
obj._pretty_form = ('(' + vector1._pretty_form + '|' +
vector2._pretty_form + ')')
obj._latex_form = ('(' + vector1._latex_form + "{|}" +
vector2._latex_form + ')')
return obj
def _sympystr(self, printer):
return "({}|{})".format(
printer._print(self.args[0]), printer._print(self.args[1]))
class DyadicMul(BasisDependentMul, Dyadic):
""" Products of scalars and BaseDyadics """
def __new__(cls, *args, **options):
obj = BasisDependentMul.__new__(cls, *args, **options)
return obj
@property
def base_dyadic(self):
""" The BaseDyadic involved in the product. """
return self._base_instance
@property
def measure_number(self):
""" The scalar expression involved in the definition of
this DyadicMul.
"""
return self._measure_number
class DyadicAdd(BasisDependentAdd, Dyadic):
""" Class to hold dyadic sums """
def __new__(cls, *args, **options):
obj = BasisDependentAdd.__new__(cls, *args, **options)
return obj
def _sympystr(self, printer):
items = list(self.components.items())
items.sort(key=lambda x: x[0].__str__())
return " + ".join(printer._print(k * v) for k, v in items)
class DyadicZero(BasisDependentZero, Dyadic):
"""
Class to denote a zero dyadic
"""
_op_priority = 13.1
_pretty_form = '(0|0)'
_latex_form = r'(\mathbf{\hat{0}}|\mathbf{\hat{0}})'
def __new__(cls):
obj = BasisDependentZero.__new__(cls)
return obj
Dyadic._expr_type = Dyadic
Dyadic._mul_func = DyadicMul
Dyadic._add_func = DyadicAdd
Dyadic._zero_func = DyadicZero
Dyadic._base_func = BaseDyadic
Dyadic.zero = DyadicZero()