2022-06-24 17:14:37 +02:00

348 lines
12 KiB
Python

"""
Mathematica code printer
"""
from typing import Any, Dict, Set, Tuple
from sympy.core import Basic, Expr, Float
from sympy.printing.codeprinter import CodePrinter
from sympy.printing.precedence import precedence
# Used in MCodePrinter._print_Function(self)
known_functions = {
"exp": [(lambda x: True, "Exp")],
"log": [(lambda x: True, "Log")],
"sin": [(lambda x: True, "Sin")],
"cos": [(lambda x: True, "Cos")],
"tan": [(lambda x: True, "Tan")],
"cot": [(lambda x: True, "Cot")],
"sec": [(lambda x: True, "Sec")],
"csc": [(lambda x: True, "Csc")],
"asin": [(lambda x: True, "ArcSin")],
"acos": [(lambda x: True, "ArcCos")],
"atan": [(lambda x: True, "ArcTan")],
"acot": [(lambda x: True, "ArcCot")],
"asec": [(lambda x: True, "ArcSec")],
"acsc": [(lambda x: True, "ArcCsc")],
"atan2": [(lambda *x: True, "ArcTan")],
"sinh": [(lambda x: True, "Sinh")],
"cosh": [(lambda x: True, "Cosh")],
"tanh": [(lambda x: True, "Tanh")],
"coth": [(lambda x: True, "Coth")],
"sech": [(lambda x: True, "Sech")],
"csch": [(lambda x: True, "Csch")],
"asinh": [(lambda x: True, "ArcSinh")],
"acosh": [(lambda x: True, "ArcCosh")],
"atanh": [(lambda x: True, "ArcTanh")],
"acoth": [(lambda x: True, "ArcCoth")],
"asech": [(lambda x: True, "ArcSech")],
"acsch": [(lambda x: True, "ArcCsch")],
"conjugate": [(lambda x: True, "Conjugate")],
"Max": [(lambda *x: True, "Max")],
"Min": [(lambda *x: True, "Min")],
"erf": [(lambda x: True, "Erf")],
"erf2": [(lambda *x: True, "Erf")],
"erfc": [(lambda x: True, "Erfc")],
"erfi": [(lambda x: True, "Erfi")],
"erfinv": [(lambda x: True, "InverseErf")],
"erfcinv": [(lambda x: True, "InverseErfc")],
"erf2inv": [(lambda *x: True, "InverseErf")],
"expint": [(lambda *x: True, "ExpIntegralE")],
"Ei": [(lambda x: True, "ExpIntegralEi")],
"fresnelc": [(lambda x: True, "FresnelC")],
"fresnels": [(lambda x: True, "FresnelS")],
"gamma": [(lambda x: True, "Gamma")],
"uppergamma": [(lambda *x: True, "Gamma")],
"polygamma": [(lambda *x: True, "PolyGamma")],
"loggamma": [(lambda x: True, "LogGamma")],
"beta": [(lambda *x: True, "Beta")],
"Ci": [(lambda x: True, "CosIntegral")],
"Si": [(lambda x: True, "SinIntegral")],
"Chi": [(lambda x: True, "CoshIntegral")],
"Shi": [(lambda x: True, "SinhIntegral")],
"li": [(lambda x: True, "LogIntegral")],
"factorial": [(lambda x: True, "Factorial")],
"factorial2": [(lambda x: True, "Factorial2")],
"subfactorial": [(lambda x: True, "Subfactorial")],
"catalan": [(lambda x: True, "CatalanNumber")],
"harmonic": [(lambda *x: True, "HarmonicNumber")],
"RisingFactorial": [(lambda *x: True, "Pochhammer")],
"FallingFactorial": [(lambda *x: True, "FactorialPower")],
"laguerre": [(lambda *x: True, "LaguerreL")],
"assoc_laguerre": [(lambda *x: True, "LaguerreL")],
"hermite": [(lambda *x: True, "HermiteH")],
"jacobi": [(lambda *x: True, "JacobiP")],
"gegenbauer": [(lambda *x: True, "GegenbauerC")],
"chebyshevt": [(lambda *x: True, "ChebyshevT")],
"chebyshevu": [(lambda *x: True, "ChebyshevU")],
"legendre": [(lambda *x: True, "LegendreP")],
"assoc_legendre": [(lambda *x: True, "LegendreP")],
"mathieuc": [(lambda *x: True, "MathieuC")],
"mathieus": [(lambda *x: True, "MathieuS")],
"mathieucprime": [(lambda *x: True, "MathieuCPrime")],
"mathieusprime": [(lambda *x: True, "MathieuSPrime")],
"stieltjes": [(lambda x: True, "StieltjesGamma")],
"elliptic_e": [(lambda *x: True, "EllipticE")],
"elliptic_f": [(lambda *x: True, "EllipticE")],
"elliptic_k": [(lambda x: True, "EllipticK")],
"elliptic_pi": [(lambda *x: True, "EllipticPi")],
"zeta": [(lambda *x: True, "Zeta")],
"besseli": [(lambda *x: True, "BesselI")],
"besselj": [(lambda *x: True, "BesselJ")],
"besselk": [(lambda *x: True, "BesselK")],
"bessely": [(lambda *x: True, "BesselY")],
"hankel1": [(lambda *x: True, "HankelH1")],
"hankel2": [(lambda *x: True, "HankelH2")],
"airyai": [(lambda x: True, "AiryAi")],
"airybi": [(lambda x: True, "AiryBi")],
"airyaiprime": [(lambda x: True, "AiryAiPrime")],
"airybiprime": [(lambda x: True, "AiryBiPrime")],
"polylog": [(lambda *x: True, "PolyLog")],
"lerchphi": [(lambda *x: True, "LerchPhi")],
"gcd": [(lambda *x: True, "GCD")],
"lcm": [(lambda *x: True, "LCM")],
"jn": [(lambda *x: True, "SphericalBesselJ")],
"yn": [(lambda *x: True, "SphericalBesselY")],
"hyper": [(lambda *x: True, "HypergeometricPFQ")],
"meijerg": [(lambda *x: True, "MeijerG")],
"appellf1": [(lambda *x: True, "AppellF1")],
"DiracDelta": [(lambda x: True, "DiracDelta")],
"Heaviside": [(lambda x: True, "HeavisideTheta")],
"KroneckerDelta": [(lambda *x: True, "KroneckerDelta")],
}
class MCodePrinter(CodePrinter):
"""A printer to convert python expressions to
strings of the Wolfram's Mathematica code
"""
printmethod = "_mcode"
language = "Wolfram Language"
_default_settings = {
'order': None,
'full_prec': 'auto',
'precision': 15,
'user_functions': {},
'human': True,
'allow_unknown_functions': False,
} # type: Dict[str, Any]
_number_symbols = set() # type: Set[Tuple[Expr, Float]]
_not_supported = set() # type: Set[Basic]
def __init__(self, settings={}):
"""Register function mappings supplied by user"""
CodePrinter.__init__(self, settings)
self.known_functions = dict(known_functions)
userfuncs = settings.get('user_functions', {}).copy()
for k, v in userfuncs.items():
if not isinstance(v, list):
userfuncs[k] = [(lambda *x: True, v)]
self.known_functions.update(userfuncs)
def _format_code(self, lines):
return lines
def _print_Pow(self, expr):
PREC = precedence(expr)
return '%s^%s' % (self.parenthesize(expr.base, PREC),
self.parenthesize(expr.exp, PREC))
def _print_Mul(self, expr):
PREC = precedence(expr)
c, nc = expr.args_cnc()
res = super()._print_Mul(expr.func(*c))
if nc:
res += '*'
res += '**'.join(self.parenthesize(a, PREC) for a in nc)
return res
def _print_Relational(self, expr):
lhs_code = self._print(expr.lhs)
rhs_code = self._print(expr.rhs)
op = expr.rel_op
return "{} {} {}".format(lhs_code, op, rhs_code)
# Primitive numbers
def _print_Zero(self, expr):
return '0'
def _print_One(self, expr):
return '1'
def _print_NegativeOne(self, expr):
return '-1'
def _print_Half(self, expr):
return '1/2'
def _print_ImaginaryUnit(self, expr):
return 'I'
# Infinity and invalid numbers
def _print_Infinity(self, expr):
return 'Infinity'
def _print_NegativeInfinity(self, expr):
return '-Infinity'
def _print_ComplexInfinity(self, expr):
return 'ComplexInfinity'
def _print_NaN(self, expr):
return 'Indeterminate'
# Mathematical constants
def _print_Exp1(self, expr):
return 'E'
def _print_Pi(self, expr):
return 'Pi'
def _print_GoldenRatio(self, expr):
return 'GoldenRatio'
def _print_TribonacciConstant(self, expr):
expanded = expr.expand(func=True)
PREC = precedence(expr)
return self.parenthesize(expanded, PREC)
def _print_EulerGamma(self, expr):
return 'EulerGamma'
def _print_Catalan(self, expr):
return 'Catalan'
def _print_list(self, expr):
return '{' + ', '.join(self.doprint(a) for a in expr) + '}'
_print_tuple = _print_list
_print_Tuple = _print_list
def _print_ImmutableDenseMatrix(self, expr):
return self.doprint(expr.tolist())
def _print_ImmutableSparseMatrix(self, expr):
from sympy.core.compatibility import default_sort_key
def print_rule(pos, val):
return '{} -> {}'.format(
self.doprint((pos[0]+1, pos[1]+1)), self.doprint(val))
def print_data():
items = sorted(expr.todok().items(), key=default_sort_key)
return '{' + \
', '.join(print_rule(k, v) for k, v in items) + \
'}'
def print_dims():
return self.doprint(expr.shape)
return 'SparseArray[{}, {}]'.format(print_data(), print_dims())
def _print_ImmutableDenseNDimArray(self, expr):
return self.doprint(expr.tolist())
def _print_ImmutableSparseNDimArray(self, expr):
def print_string_list(string_list):
return '{' + ', '.join(a for a in string_list) + '}'
def to_mathematica_index(*args):
"""Helper function to change Python style indexing to
Pathematica indexing.
Python indexing (0, 1 ... n-1)
-> Mathematica indexing (1, 2 ... n)
"""
return tuple(i + 1 for i in args)
def print_rule(pos, val):
"""Helper function to print a rule of Mathematica"""
return '{} -> {}'.format(self.doprint(pos), self.doprint(val))
def print_data():
"""Helper function to print data part of Mathematica
sparse array.
It uses the fourth notation ``SparseArray[data,{d1,d2,...}]``
from
https://reference.wolfram.com/language/ref/SparseArray.html
``data`` must be formatted with rule.
"""
return print_string_list(
[print_rule(
to_mathematica_index(*(expr._get_tuple_index(key))),
value)
for key, value in sorted(expr._sparse_array.items())]
)
def print_dims():
"""Helper function to print dimensions part of Mathematica
sparse array.
It uses the fourth notation ``SparseArray[data,{d1,d2,...}]``
from
https://reference.wolfram.com/language/ref/SparseArray.html
"""
return self.doprint(expr.shape)
return 'SparseArray[{}, {}]'.format(print_data(), print_dims())
def _print_Function(self, expr):
if expr.func.__name__ in self.known_functions:
cond_mfunc = self.known_functions[expr.func.__name__]
for cond, mfunc in cond_mfunc:
if cond(*expr.args):
return "%s[%s]" % (mfunc, self.stringify(expr.args, ", "))
elif (expr.func.__name__ in self._rewriteable_functions and
self._rewriteable_functions[expr.func.__name__] in self.known_functions):
# Simple rewrite to supported function possible
return self._print(expr.rewrite(self._rewriteable_functions[expr.func.__name__]))
return expr.func.__name__ + "[%s]" % self.stringify(expr.args, ", ")
_print_MinMaxBase = _print_Function
def _print_LambertW(self, expr):
if len(expr.args) == 1:
return "ProductLog[{}]".format(self._print(expr.args[0]))
return "ProductLog[{}, {}]".format(
self._print(expr.args[1]), self._print(expr.args[0]))
def _print_Integral(self, expr):
if len(expr.variables) == 1 and not expr.limits[0][1:]:
args = [expr.args[0], expr.variables[0]]
else:
args = expr.args
return "Hold[Integrate[" + ', '.join(self.doprint(a) for a in args) + "]]"
def _print_Sum(self, expr):
return "Hold[Sum[" + ', '.join(self.doprint(a) for a in expr.args) + "]]"
def _print_Derivative(self, expr):
dexpr = expr.expr
dvars = [i[0] if i[1] == 1 else i for i in expr.variable_count]
return "Hold[D[" + ', '.join(self.doprint(a) for a in [dexpr] + dvars) + "]]"
def _get_comment(self, text):
return "(* {} *)".format(text)
def mathematica_code(expr, **settings):
r"""Converts an expr to a string of the Wolfram Mathematica code
Examples
========
>>> from sympy import mathematica_code as mcode, symbols, sin
>>> x = symbols('x')
>>> mcode(sin(x).series(x).removeO())
'(1/120)*x^5 - 1/6*x^3 + x'
"""
return MCodePrinter(settings).doprint(expr)