#include #include #include #include #include #include #include #include #define USERSPACE 0x80000000 //----------- volatile pml4_t MmPageMapLevel4[512] __attribute__((__aligned__(KPAGESIZE))); extern ulong _text; extern ulong _text_end; extern ulong _rodata; extern ulong _rodata_end; extern ulong _data; extern ulong _data_end; ulong MmStackGuards[2] = { 0 }; ulong MmVirtLastAddress = 0; enum { PRESENT = 1 << 0, READWRITE = 1 << 1, USERMODE = 1 << 2, WRITETHR = 1 << 3, CACHEDIS = 1 << 4, ACCESSED = 1 << 5, DIRTY = 1 << 6, HUGE = 1 << 7, NX = 1UL << 63 }; // // Creates our new page table structure and loads it // void MmInitPaging(void) { extern MemoryMap_t memoryMap; pdpe_t *MmPDP = NULL; pde_t *MmPD = NULL; pte_t *MmPT = NULL; ulong index; ulong lastKernelAddr = (ulong)(_heap_start + _heap_max); ulong firstDirectoryAddr = 0; ulong lastDirectoryAddr = 0; // Maximum PHYSICAL address in memory ulong phRamSize = memoryMap.freeRamSize + memoryMap.nonfreeRamSize; // Difference between the end of kernel and the begin of userspace ulong diffKernUsr = (ulong)USERSPACE - lastKernelAddr; // Maximum VIRTUAL address in memory MmVirtLastAddress = phRamSize + diffKernUsr; DebugLog("\tPaging gap : %u MB (%p)\n\tLast virtual address %p\n", diffKernUsr / MB, diffKernUsr, MmVirtLastAddress); memzero((void *)&MmPageMapLevel4[0], sizeof(MmPageMapLevel4)); for (ulong curAddrPML4 = 0; curAddrPML4 < MmVirtLastAddress; curAddrPML4 += ((ulong)KPAGESIZE * 0x8000000)) { // Create an entry in PML4 each 512GB // 0x8000000 = 512 ^ 3 MmPDP = (pdpe_t *)malloc(512*sizeof(pde_t)); if (!firstDirectoryAddr) { firstDirectoryAddr = (ulong)MmPDP; } index = (curAddrPML4 / ((ulong)KPAGESIZE * 0x8000000)) % 512; //DebugLog("\t\t\t\tPDP %d : %p\n", index, MmPDP); MmPageMapLevel4[index] = (pdpe_t *)((ulong)MmPDP | PRESENT | READWRITE); for (ulong curAddrPDP = curAddrPML4; curAddrPDP < (curAddrPML4 + ((ulong)KPAGESIZE * 0x8000000)) && curAddrPDP < MmVirtLastAddress; curAddrPDP += ((ulong)KPAGESIZE * 0x40000)) { // Create an intry in PDP each 1GB // 0x40000 = 512 ^ 2 MmPD = (pde_t *)malloc(512*sizeof(pde_t)); index = (curAddrPDP / ((ulong)KPAGESIZE * 0x40000)) % 512; //DebugLog("\t\t\t\tPD %d : %p\n", index, MmPD); MmPDP[index] = (pde_t *)((ulong)MmPD | PRESENT | READWRITE); for (ulong curAddrPD = curAddrPDP; curAddrPD < (curAddrPDP + ((ulong)KPAGESIZE * 0x40000)) && curAddrPD < MmVirtLastAddress; curAddrPD += ((ulong)KPAGESIZE * 0x200)) { // Create an intry in PD each 2MB // 0x200 = 512 MmPT = (pte_t *)malloc(512*sizeof(pte_t)); index = (curAddrPD / ((ulong)KPAGESIZE * 0x200)) % 512; //DebugLog("\t\t\t\tPT %d : %p\n", index, MmPT); MmPD[index] = (pte_t *)((ulong)MmPT | PRESENT | READWRITE); for (ulong curAddrPT = curAddrPD; curAddrPT < (curAddrPD + ((ulong)KPAGESIZE * 0x200)) && curAddrPT < MmVirtLastAddress; curAddrPT += (ulong)KPAGESIZE) { // Create an entry in PT each page of 4KB index = (curAddrPT / ((ulong)KPAGESIZE)) % 512; //DebugLog("\t\t\t\tPage %d : %p\n", index, curAddrPT); // STACK GUARD PAGE */ if ((ulong)curAddrPT == (ulong)BtLoaderInfo.stackEndAddr) { MmPT[index] = (ulong)curAddrPT | PRESENT; MmStackGuards[0] = (ulong)curAddrPT; //DebugLog("\tStack Guard at %p\n", curAddrPT); } else if ((ulong)curAddrPT == (ulong)BtLoaderInfo.kernelEndAddr) { MmPT[index] = (ulong)curAddrPT | PRESENT; MmStackGuards[1] = (ulong)curAddrPT; //DebugLog("\tStack Guard at %p\n", curAddrPT); } // SECTION .TEXT PROTECTION else if ((ulong)curAddrPT >= (ulong)&_text && (ulong)curAddrPT <= (ulong)&_text_end) { MmPT[index] = (ulong)curAddrPT | PRESENT; //DebugLog("\tSection .text at %p\n", curAddrPT); } // SECTION .DATA PROTECTION else if ((ulong)curAddrPT >= (ulong)&_data && (ulong)curAddrPT <= (ulong)&_data_end) { MmPT[index] = (ulong)curAddrPT | PRESENT | WRITETHR | READWRITE | NX; //DebugLog("\tSection .data at %p\n", curAddrPT); } // SECTION .RODATA PROTECTION else if ((ulong)curAddrPT >= (ulong)&_rodata && (ulong)curAddrPT <= (ulong)&_rodata_end) { MmPT[index] = (ulong)curAddrPT | PRESENT | WRITETHR | NX; //DebugLog("\tSection .rodata at %p\n", curAddrPT); } // While we're inside the kernel pages else if ((ulong)curAddrPT <= lastKernelAddr) { MmPT[index] = (ulong)curAddrPT | PRESENT | READWRITE; if ((ulong)curAddrPT == lastKernelAddr) { DebugLog("\tLast page of kernel at %p\n", curAddrPT); } } // While we're inside the userspace pages else if ((ulong)curAddrPT >= USERSPACE) { MmPT[index] = ((ulong)curAddrPT); // Not present for instance if ((ulong)curAddrPT == USERSPACE) { DebugLog("\tUserspace at %p:%p\n", curAddrPT, curAddrPT + diffKernUsr); } } else { MmPT[index] = 0; } KeFlushTlbSingle(curAddrPT); } } } } lastDirectoryAddr = (ulong)MmPT; MmLoadPML4((void *)MmPageMapLevel4); MmEnableWriteProtect(); DebugLog("\tPage table size : %u MB\n", (lastDirectoryAddr - firstDirectoryAddr)/MB); } // // Translates a virtual address to its physical equivalent // void *MmTransVirtToPhyAddr(void* virtualAddr) { ulong virtAddrPage = (ulong)virtualAddr & ( ~(KPAGESIZE - 1)); if (virtAddrPage > MmVirtLastAddress) { KeStartPanic("MmTransVirtToPhyAddr() Out of bound of the address space !"); } pdpe_t *pdp = (pdpe_t*)((ulong)MmPageMapLevel4[(virtAddrPage / ((ulong)KPAGESIZE * 0x8000000)) % 512] & ~(KPAGESIZE - 1)); DebugLog("pdp : %p\n", pdp); pde_t *pd = (pde_t*)( (ulong)pdp[(virtAddrPage / ((ulong)KPAGESIZE * 0x40000)) % 512] & ~(KPAGESIZE - 1)); DebugLog("pd : %p\n", pd); pte_t *pt = (pte_t*)( (ulong)pd[(virtAddrPage / ((ulong)KPAGESIZE * 0x200)) % 512] & ~(KPAGESIZE - 1)); DebugLog("pt : %p\n", pt); ulong page = (ulong)pt[(virtAddrPage / ((ulong)KPAGESIZE)) % 512]; DebugLog("page : %p\n", page); if (page == (page & ~(KPAGESIZE - 1))) { return NULL; } return (void*)((page & ~(KPAGESIZE - 1))+ ((ulong)virtualAddr - (ulong)virtAddrPage)); } void *MmTransPhyToVirtAddr(void* physicalAddr) { return (void*)0; } // // Add flags to a page // void MmSetPage(void* virtualAddr, ulong flags) { ulong virtAddrPage = (ulong)virtualAddr & ( ~(KPAGESIZE - 1)); if (virtAddrPage > MmVirtLastAddress) { KeStartPanic("MmSetPage() Out of bound of the address space !"); } pdpe_t *pdp = (pdpe_t*)((ulong)MmPageMapLevel4[virtAddrPage / ((ulong)KPAGESIZE * 0x8000000)] & ~(KPAGESIZE - 1)); pde_t *pd = (pde_t*)( (ulong)pdp[virtAddrPage / ((ulong)KPAGESIZE * 0x40000)] & ~(KPAGESIZE - 1)); pte_t *pt = (pte_t*)( (ulong)pd[virtAddrPage / ((ulong)KPAGESIZE * 0x200)] & ~(KPAGESIZE - 1)); pt[virtAddrPage / ((ulong)KPAGESIZE)] |= flags; KeFlushTlbSingle(virtAddrPage); } // // Remove flags of a page // void MmUnsetPage(void* virtualAddr, ulong flags) { ulong virtAddrPage = (ulong)virtualAddr & ( ~(KPAGESIZE - 1)); if (virtAddrPage > MmVirtLastAddress) { KeStartPanic("MmUnsetPage() Out of bound of the address space !"); } pdpe_t *pdp = (pdpe_t*)((ulong)MmPageMapLevel4[virtAddrPage / ((ulong)KPAGESIZE * 0x8000000)] & ~(KPAGESIZE - 1)); pde_t *pd = (pde_t*)( (ulong)pdp[virtAddrPage / ((ulong)KPAGESIZE * 0x40000)] & ~(KPAGESIZE - 1)); pte_t *pt = (pte_t*)( (ulong)pd[virtAddrPage / ((ulong)KPAGESIZE * 0x200)] & ~(KPAGESIZE - 1)); pt[virtAddrPage / ((ulong)KPAGESIZE)] &= (~flags); KeFlushTlbSingle(virtAddrPage); } // // Returns the rank of the Stack Guards // void *MmGetStackGuards(char rank) { return (void *)MmStackGuards[(int)rank]; } // // Page fault handler // static void PagingHandler(ISRFrame_t *regs) { ulong StackGuardOne = (ulong)MmGetStackGuards(0); ulong StackGuardTwo = (ulong)MmGetStackGuards(1); if ((regs->cr2 >= StackGuardOne) && (regs->cr2 <= StackGuardOne + KPAGESIZE) && (regs->rsp <= regs->cr2)) { bprintf(BStdOut, "\n\n%CPANIC\n[ISR 0x8] Irrecoverable Kernel Stack Underflow\n\n" " Page Fault Error code : %#x (%b)\n" " Stack Guard bypassed : %#x", VGA_COLOR_LIGHT_RED, regs->ErrorCode, regs->ErrorCode, StackGuardOne ); } else if ((regs->cr2 >= StackGuardTwo) && (regs->cr2 <= StackGuardTwo + KPAGESIZE) && (regs->rsp >= regs->cr2)) { bprintf(BStdOut, "\n\n%CPANIC\n[ISR 0x8] Irrecoverable Kernel Stack Overflow\n\n" " Page Fault Error code : %#x (%b)\n" " Stack Guard bypassed : %#x", VGA_COLOR_LIGHT_RED, regs->ErrorCode, regs->ErrorCode, StackGuardTwo ); } else if (regs->cr2 == 0) { bprintf(BStdOut, "\n\n%CPANIC\n[ISR 0x8] Null vector exception !\n\n" " Page Fault Error code : %#x (%b)\n", VGA_COLOR_LIGHT_RED, regs->intNo, regs->ErrorCode, regs->ErrorCode ); } else if (regs->cr2 >= MmVirtLastAddress || regs->cr2 <= 0) { bprintf(BStdOut, "\n\n%CPANIC\n[ISR 0x8] Out of bound of the address space at %p !\n\n" " End of the address space : %p\n" " Page Fault Error code : %#x (%b)\n", VGA_COLOR_LIGHT_RED, regs->cr2, MmVirtLastAddress, regs->ErrorCode, regs->ErrorCode ); } else { //XXX page fault bprintf(BStdOut, "\n\n%CPANIC\n[ISR 0x8] Irrecoverable Kernel Page Fault at %p\n\n" " Error code : 0x%x (%b)", VGA_COLOR_LIGHT_RED, regs->cr2, regs->ErrorCode, regs->ErrorCode ); } KeBrkDumpRegisters(regs); BStdOut->flusher(BStdOut); KeHaltCPU(); } void MmActivatePageHandler(void) { KeRegisterISR(PagingHandler, 0xe); DebugLog("\tPaging activated\n"); }