
The Multiboot Specification version 0.6.96

Yoshinori K. Okuji, Bryan Ford, Erich Stefan Boleyn, Kunihiro Ishiguro

Copyright c© 1995,96 Bryan Ford <baford@cs.utah.edu>

Copyright c© 1995,96 Erich Stefan Boleyn <erich@uruk.org>

Copyright c© 1999,2000,2001,2002,2005,2006,2009 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided also that the entire result-
ing derived work is distributed under the terms of a permission notice identical
to this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions.

Chapter 1: Introduction to Multiboot Specification 1

1 Introduction to Multiboot Specification

This chapter describes some rough information on the Multiboot Specification. Note that
this is not a part of the specification itself.

1.1 The background of Multiboot Specification

Every operating system ever created tends to have its own boot loader. Installing a new
operating system on a machine generally involves installing a whole new set of boot mech-
anisms, each with completely different install-time and boot-time user interfaces. Getting
multiple operating systems to coexist reliably on one machine through typical chaining
mechanisms can be a nightmare. There is little or no choice of boot loaders for a particular
operating system — if the one that comes with the operating system doesn’t do exactly
what you want, or doesn’t work on your machine, you’re screwed.

While we may not be able to fix this problem in existing proprietary operating sys-
tems, it shouldn’t be too difficult for a few people in the free operating system communities
to put their heads together and solve this problem for the popular free operating systems.
That’s what this specification aims for. Basically, it specifies an interface between a boot
loader and a operating system, such that any complying boot loader should be able to
load any complying operating system. This specification does not specify how boot loaders
should work — only how they must interface with the operating system being loaded.

1.2 The target architecture

This specification is primarily targeted at pc, since they are the most common and have the
largest variety of operating systems and boot loaders. However, to the extent that certain
other architectures may need a boot specification and do not have one already, a variation
of this specification, stripped of the x86-specific details, could be adopted for them as well.

1.3 The target operating systems

This specification is targeted toward free 32-bit operating systems that can be fairly easily
modified to support the specification without going through lots of bureaucratic rigmarole.
The particular free operating systems that this specification is being primarily designed for
are Linux, the kernels of FreeBSD and NetBSD, Mach, and VSTa. It is hoped that other
emerging free operating systems will adopt it from the start, and thus immediately be able
to take advantage of existing boot loaders. It would be nice if proprietary operating system
vendors eventually adopted this specification as well, but that’s probably a pipe dream.

1.4 Boot sources

It should be possible to write compliant boot loaders that load the OS image from a variety
of sources, including floppy disk, hard disk, and across a network.

Disk-based boot loaders may use a variety of techniques to find the relevant OS image
and boot module data on disk, such as by interpretation of specific file systems (e.g. the
BSD/Mach boot loader), using precalculated blocklists (e.g. LILO), loading from a special
boot partition (e.g. OS/2), or even loading from within another operating system (e.g. the

2 Multiboot Specification version 0.6.96

VSTa boot code, which loads from DOS). Similarly, network-based boot loaders could use
a variety of network hardware and protocols.

It is hoped that boot loaders will be created that support multiple loading mecha-
nisms, increasing their portability, robustness, and user-friendliness.

1.5 Configure an operating system at boot-time

It is often necessary for one reason or another for the user to be able to provide some
configuration information to an operating system dynamically at boot time. While this
specification should not dictate how this configuration information is obtained by the boot
loader, it should provide a standard means for the boot loader to pass such information to
the operating system.

1.6 How to make OS development easier

OS images should be easy to generate. Ideally, an OS image should simply be an ordinary
32-bit executable file in whatever file format the operating system normally uses. It should
be possible to nm or disassemble OS images just like normal executables. Specialized tools
should not be required to create OS images in a special file format. If this means shifting
some work from the operating system to a boot loader, that is probably appropriate, because
all the memory consumed by the boot loader will typically be made available again after
the boot process is created, whereas every bit of code in the OS image typically has to
remain in memory forever. The operating system should not have to worry about getting
into 32-bit mode initially, because mode switching code generally needs to be in the boot
loader anyway in order to load operating system data above the 1MB boundary, and forcing
the operating system to do this makes creation of OS images much more difficult.

Unfortunately, there is a horrendous variety of executable file formats even among
free Unix-like pc-based operating systems — generally a different format for each operating
system. Most of the relevant free operating systems use some variant of a.out format, but
some are moving to elf. It is highly desirable for boot loaders not to have to be able to
interpret all the different types of executable file formats in existence in order to load the
OS image — otherwise the boot loader effectively becomes operating system specific again.

This specification adopts a compromise solution to this problem. Multiboot-
compliant OS images always contain a magic Multiboot header (see Section 3.1 [OS
image format], page 5), which allows the boot loader to load the image without having
to understand numerous a.out variants or other executable formats. This magic header
does not need to be at the very beginning of the executable file, so kernel images can still
conform to the local a.out format variant in addition to being Multiboot-compliant.

1.7 Boot modules

Many modern operating system kernels, such as Mach and the microkernel in VSTa, do
not by themselves contain enough mechanism to get the system fully operational: they
require the presence of additional software modules at boot time in order to access devices,
mount file systems, etc. While these additional modules could be embedded in the main
OS image along with the kernel itself, and the resulting image be split apart manually by
the operating system when it receives control, it is often more flexible, more space-efficient,

Chapter 1: Introduction to Multiboot Specification 3

and more convenient to the operating system and user if the boot loader can load these
additional modules independently in the first place.

Thus, this specification should provide a standard method for a boot loader to indi-
cate to the operating system what auxiliary boot modules were loaded, and where they can
be found. Boot loaders don’t have to support multiple boot modules, but they are strongly
encouraged to, because some operating systems will be unable to boot without them.

4 Multiboot Specification version 0.6.96

2 The definitions of terms used through the
specification

must We use the term must, when any boot loader or OS image needs to follow a
rule — otherwise, the boot loader or OS image is not Multiboot-compliant.

should We use the term should, when any boot loader or OS image is recommended
to follow a rule, but it doesn’t need to follow the rule.

may We use the term may, when any boot loader or OS image is allowed to follow
a rule.

boot loader
Whatever program or set of programs loads the image of the final operating
system to be run on the machine. The boot loader may itself consist of several
stages, but that is an implementation detail not relevant to this specification.
Only the final stage of the boot loader — the stage that eventually transfers
control to an operating system — must follow the rules specified in this doc-
ument in order to be Multiboot-compliant; earlier boot loader stages may be
designed in whatever way is most convenient.

OS image The initial binary image that a boot loader loads into memory and transfers
control to start an operating system. The OS image is typically an executable
containing the operating system kernel.

boot module
Other auxiliary files that a boot loader loads into memory along with an OS
image, but does not interpret in any way other than passing their locations to
the operating system when it is invoked.

Multiboot-compliant
A boot loader or an OS image which follows the rules defined as must is
Multiboot-compliant. When this specification specifies a rule as should or may,
a Multiboot-complaint boot loader/OS image doesn’t need to follow the rule.

u8 The type of unsigned 8-bit data.

u16 The type of unsigned 16-bit data. Because the target architecture is little-
endian, u16 is coded in little-endian.

u32 The type of unsigned 32-bit data. Because the target architecture is little-
endian, u32 is coded in little-endian.

u64 The type of unsigned 64-bit data. Because the target architecture is little-
endian, u64 is coded in little-endian.

Chapter 3: The exact definitions of Multiboot Specification 5

3 The exact definitions of Multiboot Specification

There are three main aspects of a boot loader/OS image interface:

1. The format of an OS image as seen by a boot loader.

2. The state of a machine when a boot loader starts an operating system.

3. The format of information passed by a boot loader to an operating system.

3.1 OS image format

An OS image may be an ordinary 32-bit executable file in the standard format for that
particular operating system, except that it may be linked at a non-default load address to
avoid loading on top of the pc’s I/O region or other reserved areas, and of course it should
not use shared libraries or other fancy features.

An OS image must contain an additional header called Multiboot header, besides
the headers of the format used by the OS image. The Multiboot header must be contained
completely within the first 8192 bytes of the OS image, and must be longword (32-bit)
aligned. In general, it should come as early as possible, and may be embedded in the
beginning of the text segment after the real executable header.

3.1.1 The layout of Multiboot header

The layout of the Multiboot header must be as follows:

Offset Type Field Name Note
0 u32 magic required
4 u32 flags required
8 u32 checksum required
12 u32 header addr if flags[16] is set
16 u32 load addr if flags[16] is set
20 u32 load end addr if flags[16] is set
24 u32 bss end addr if flags[16] is set
28 u32 entry addr if flags[16] is set
32 u32 mode type if flags[2] is set
36 u32 width if flags[2] is set
40 u32 height if flags[2] is set
44 u32 depth if flags[2] is set

The fields ‘magic’, ‘flags’ and ‘checksum’ are defined in Section 3.1.2 [Header magic
fields], page 5, the fields ‘header_addr’, ‘load_addr’, ‘load_end_addr’, ‘bss_end_addr’
and ‘entry_addr’ are defined in Section 3.1.3 [Header address fields], page 6, and the fields
‘mode_type’, ‘width’, ‘height’ and ‘depth’ are defined in Section 3.1.4 [Header graphics
fields], page 7.

3.1.2 The magic fields of Multiboot header

‘magic’ The field ‘magic’ is the magic number identifying the header, which must be
the hexadecimal value 0x1BADB002.

‘flags’ The field ‘flags’ specifies features that the OS image requests or requires of
an boot loader. Bits 0-15 indicate requirements; if the boot loader sees any of

6 Multiboot Specification version 0.6.96

these bits set but doesn’t understand the flag or can’t fulfill the requirements it
indicates for some reason, it must notify the user and fail to load the OS image.
Bits 16-31 indicate optional features; if any bits in this range are set but the
boot loader doesn’t understand them, it may simply ignore them and proceed
as usual. Naturally, all as-yet-undefined bits in the ‘flags’ word must be set
to zero in OS images. This way, the ‘flags’ fields serves for version control as
well as simple feature selection.

If bit 0 in the ‘flags’ word is set, then all boot modules loaded along with the
operating system must be aligned on page (4KB) boundaries. Some operating
systems expect to be able to map the pages containing boot modules directly
into a paged address space during startup, and thus need the boot modules to
be page-aligned.

If bit 1 in the ‘flags’ word is set, then information on available memory via at
least the ‘mem_*’ fields of the Multiboot information structure (see Section 3.3
[Boot information format], page 8) must be included. If the boot loader is
capable of passing a memory map (the ‘mmap_*’ fields) and one exists, then it
may be included as well.

If bit 2 in the ‘flags’ word is set, information about the video mode table (see
Section 3.3 [Boot information format], page 8) must be available to the kernel.

If bit 16 in the ‘flags’ word is set, then the fields at offsets 12-28 in the
Multiboot header are valid, and the boot loader should use them instead of
the fields in the actual executable header to calculate where to load the OS
image. This information does not need to be provided if the kernel image is
in elf format, but it must be provided if the images is in a.out format or in
some other format. Compliant boot loaders must be able to load images that
either are in elf format or contain the load address information embedded in
the Multiboot header; they may also directly support other executable formats,
such as particular a.out variants, but are not required to.

‘checksum’
The field ‘checksum’ is a 32-bit unsigned value which, when added to the other
magic fields (i.e. ‘magic’ and ‘flags’), must have a 32-bit unsigned sum of zero.

3.1.3 The address fields of Multiboot header

All of the address fields enabled by flag bit 16 are physical addresses. The meaning of each
is as follows:

header_addr

Contains the address corresponding to the beginning of the Multiboot header
— the physical memory location at which the magic value is supposed to be
loaded. This field serves to synchronize the mapping between OS image offsets
and physical memory addresses.

load_addr

Contains the physical address of the beginning of the text segment. The offset
in the OS image file at which to start loading is defined by the offset at which
the header was found, minus (header addr - load addr). load addr must be less
than or equal to header addr.

Chapter 3: The exact definitions of Multiboot Specification 7

load_end_addr

Contains the physical address of the end of the data segment. (load end addr
- load addr) specifies how much data to load. This implies that the text and
data segments must be consecutive in the OS image; this is true for existing
a.out executable formats. If this field is zero, the boot loader assumes that the
text and data segments occupy the whole OS image file.

bss_end_addr

Contains the physical address of the end of the bss segment. The boot loader
initializes this area to zero, and reserves the memory it occupies to avoid placing
boot modules and other data relevant to the operating system in that area. If
this field is zero, the boot loader assumes that no bss segment is present.

entry_addr

The physical address to which the boot loader should jump in order to start
running the operating system.

3.1.4 The graphics fields of Multiboot header

All of the graphics fields are enabled by flag bit 2. They specify the preferred graphics
mode. Note that that is only a recommended mode by the OS image. If the mode exists,
the boot loader should set it, when the user doesn’t specify a mode explicitly. Otherwise,
the boot loader should fall back to a similar mode, if available.

The meaning of each is as follows:

mode_type

Contains ‘0’ for linear graphics mode or ‘1’ for EGA-standard text mode. Ev-
erything else is reserved for future expansion. Note that the boot loader may
set a text mode, even if this field contains ‘0’.

width Contains the number of the columns. This is specified in pixels in a graphics
mode, and in characters in a text mode. The value zero indicates that the OS
image has no preference.

height Contains the number of the lines. This is specified in pixels in a graphics mode,
and in characters in a text mode. The value zero indicates that the OS image
has no preference.

depth Contains the number of bits per pixel in a graphics mode, and zero in a text
mode. The value zero indicates that the OS image has no preference.

3.2 Machine state

When the boot loader invokes the 32-bit operating system, the machine must have the
following state:

‘EAX’ Must contain the magic value ‘0x2BADB002’; the presence of this value indicates
to the operating system that it was loaded by a Multiboot-compliant boot loader
(e.g. as opposed to another type of boot loader that the operating system can
also be loaded from).

‘EBX’ Must contain the 32-bit physical address of the Multiboot information structure
provided by the boot loader (see Section 3.3 [Boot information format], page 8).

8 Multiboot Specification version 0.6.96

‘CS’ Must be a 32-bit read/execute code segment with an offset of ‘0’ and a limit of
‘0xFFFFFFFF’. The exact value is undefined.

‘DS’
‘ES’
‘FS’
‘GS’
‘SS’ Must be a 32-bit read/write data segment with an offset of ‘0’ and a limit of

‘0xFFFFFFFF’. The exact values are all undefined.

‘A20 gate’ Must be enabled.

‘CR0’ Bit 31 (PG) must be cleared. Bit 0 (PE) must be set. Other bits are all
undefined.

‘EFLAGS’ Bit 17 (VM) must be cleared. Bit 9 (IF) must be cleared. Other bits are all
undefined.

All other processor registers and flag bits are undefined. This includes, in particular:

‘ESP’ The OS image must create its own stack as soon as it needs one.

‘GDTR’ Even though the segment registers are set up as described above, the ‘GDTR’
may be invalid, so the OS image must not load any segment registers (even just
reloading the same values!) until it sets up its own ‘GDT’.

‘IDTR’ The OS image must leave interrupts disabled until it sets up its own IDT.

However, other machine state should be left by the boot loader in normal working
order, i.e. as initialized by the bios (or DOS, if that’s what the boot loader runs from). In
other words, the operating system should be able to make bios calls and such after being
loaded, as long as it does not overwrite the bios data structures before doing so. Also, the
boot loader must leave the pic programmed with the normal bios/DOS values, even if it
changed them during the switch to 32-bit mode.

3.3 Boot information format

FIXME: Split this chapter like the chapter “OS image format”.

Upon entry to the operating system, the EBX register contains the physical address of
a Multiboot information data structure, through which the boot loader communicates vital
information to the operating system. The operating system can use or ignore any parts of
the structure as it chooses; all information passed by the boot loader is advisory only.

The Multiboot information structure and its related substructures may be placed
anywhere in memory by the boot loader (with the exception of the memory reserved for
the kernel and boot modules, of course). It is the operating system’s responsibility to avoid
overwriting this memory until it is done using it.

The format of the Multiboot information structure (as defined so far) follows:

Chapter 3: The exact definitions of Multiboot Specification 9

+-------------------+

0 | flags | (required)

+-------------------+

4 | mem_lower | (present if flags[0] is set)

8 | mem_upper | (present if flags[0] is set)

+-------------------+

12 | boot_device | (present if flags[1] is set)

+-------------------+

16 | cmdline | (present if flags[2] is set)

+-------------------+

20 | mods_count | (present if flags[3] is set)

24 | mods_addr | (present if flags[3] is set)

+-------------------+

28 - 40 | syms | (present if flags[4] or

| | flags[5] is set)

+-------------------+

44 | mmap_length | (present if flags[6] is set)

48 | mmap_addr | (present if flags[6] is set)

+-------------------+

52 | drives_length | (present if flags[7] is set)

56 | drives_addr | (present if flags[7] is set)

+-------------------+

60 | config_table | (present if flags[8] is set)

+-------------------+

64 | boot_loader_name | (present if flags[9] is set)

+-------------------+

68 | apm_table | (present if flags[10] is set)

+-------------------+

72 | vbe_control_info | (present if flags[11] is set)

76 | vbe_mode_info |

80 | vbe_mode |

82 | vbe_interface_seg |

84 | vbe_interface_off |

86 | vbe_interface_len |

+-------------------+

The first longword indicates the presence and validity of other fields in the Multiboot
information structure. All as-yet-undefined bits must be set to zero by the boot loader. Any
set bits that the operating system does not understand should be ignored. Thus, the ‘flags’
field also functions as a version indicator, allowing the Multiboot information structure to
be expanded in the future without breaking anything.

If bit 0 in the ‘flags’ word is set, then the ‘mem_*’ fields are valid. ‘mem_lower’ and
‘mem_upper’ indicate the amount of lower and upper memory, respectively, in kilobytes.
Lower memory starts at address 0, and upper memory starts at address 1 megabyte. The
maximum possible value for lower memory is 640 kilobytes. The value returned for upper
memory is maximally the address of the first upper memory hole minus 1 megabyte. It is
not guaranteed to be this value.

10 Multiboot Specification version 0.6.96

If bit 1 in the ‘flags’ word is set, then the ‘boot_device’ field is valid, and indicates
which bios disk device the boot loader loaded the OS image from. If the OS image was
not loaded from a bios disk, then this field must not be present (bit 3 must be clear). The
operating system may use this field as a hint for determining its own root device, but is not
required to. The ‘boot_device’ field is laid out in four one-byte subfields as follows:

+-------+-------+-------+-------+

| part3 | part2 | part1 | drive |

+-------+-------+-------+-------+

The first byte contains the bios drive number as understood by the bios INT 0x13
low-level disk interface: e.g. 0x00 for the first floppy disk or 0x80 for the first hard disk.

The three remaining bytes specify the boot partition. ‘part1’ specifies the top-level
partition number, ‘part2’ specifies a sub-partition in the top-level partition, etc. Partition
numbers always start from zero. Unused partition bytes must be set to 0xFF. For example,
if the disk is partitioned using a simple one-level DOS partitioning scheme, then ‘part1’
contains the DOS partition number, and ‘part2’ and ‘part3’ are both 0xFF. As another
example, if a disk is partitioned first into DOS partitions, and then one of those DOS
partitions is subdivided into several BSD partitions using BSD’s disklabel strategy, then
‘part1’ contains the DOS partition number, ‘part2’ contains the BSD sub-partition within
that DOS partition, and ‘part3’ is 0xFF.

DOS extended partitions are indicated as partition numbers starting from 4 and
increasing, rather than as nested sub-partitions, even though the underlying disk layout of
extended partitions is hierarchical in nature. For example, if the boot loader boots from
the second extended partition on a disk partitioned in conventional DOS style, then ‘part1’
will be 5, and ‘part2’ and ‘part3’ will both be 0xFF.

If bit 2 of the ‘flags’ longword is set, the ‘cmdline’ field is valid, and contains the
physical address of the command line to be passed to the kernel. The command line is a
normal C-style zero-terminated string.

If bit 3 of the ‘flags’ is set, then the ‘mods’ fields indicate to the kernel what
boot modules were loaded along with the kernel image, and where they can be found.
‘mods_count’ contains the number of modules loaded; ‘mods_addr’ contains the physical
address of the first module structure. ‘mods_count’ may be zero, indicating no boot modules
were loaded, even if bit 1 of ‘flags’ is set. Each module structure is formatted as follows:

+-------------------+

0 | mod_start |

4 | mod_end |

+-------------------+

8 | string |

+-------------------+

12 | reserved (0) |

+-------------------+

The first two fields contain the start and end addresses of the boot module itself. The
‘string’ field provides an arbitrary string to be associated with that particular boot module;
it is a zero-terminated ASCII string, just like the kernel command line. The ‘string’ field
may be 0 if there is no string associated with the module. Typically the string might be a
command line (e.g. if the operating system treats boot modules as executable programs),

Chapter 3: The exact definitions of Multiboot Specification 11

or a pathname (e.g. if the operating system treats boot modules as files in a file system),
but its exact use is specific to the operating system. The ‘reserved’ field must be set to 0
by the boot loader and ignored by the operating system.

Caution: Bits 4 & 5 are mutually exclusive.

If bit 4 in the ‘flags’ word is set, then the following fields in the Multiboot infor-
mation structure starting at byte 28 are valid:

+-------------------+

28 | tabsize |

32 | strsize |

36 | addr |

40 | reserved (0) |

+-------------------+

These indicate where the symbol table from an a.out kernel image can be found.
‘addr’ is the physical address of the size (4-byte unsigned long) of an array of a.out format
nlist structures, followed immediately by the array itself, then the size (4-byte unsigned
long) of a set of zero-terminated ascii strings (plus sizeof(unsigned long) in this case),
and finally the set of strings itself. ‘tabsize’ is equal to its size parameter (found at the
beginning of the symbol section), and ‘strsize’ is equal to its size parameter (found at
the beginning of the string section) of the following string table to which the symbol table
refers. Note that ‘tabsize’ may be 0, indicating no symbols, even if bit 4 in the ‘flags’
word is set.

If bit 5 in the ‘flags’ word is set, then the following fields in the Multiboot infor-
mation structure starting at byte 28 are valid:

+-------------------+

28 | num |

32 | size |

36 | addr |

40 | shndx |

+-------------------+

These indicate where the section header table from an ELF kernel is, the size of each
entry, number of entries, and the string table used as the index of names. They correspond
to the ‘shdr_*’ entries (‘shdr_num’, etc.) in the Executable and Linkable Format (elf)
specification in the program header. All sections are loaded, and the physical address fields
of the elf section header then refer to where the sections are in memory (refer to the
i386 elf documentation for details as to how to read the section header(s)). Note that
‘shdr_num’ may be 0, indicating no symbols, even if bit 5 in the ‘flags’ word is set.

If bit 6 in the ‘flags’ word is set, then the ‘mmap_*’ fields are valid, and indicate the
address and length of a buffer containing a memory map of the machine provided by the
bios. ‘mmap_addr’ is the address, and ‘mmap_length’ is the total size of the buffer. The
buffer consists of one or more of the following size/structure pairs (‘size’ is really used for
skipping to the next pair):

12 Multiboot Specification version 0.6.96

+-------------------+

-4 | size |

+-------------------+

0 | base_addr |

8 | length |

16 | type |

+-------------------+

where ‘size’ is the size of the associated structure in bytes, which can be greater
than the minimum of 20 bytes. ‘base_addr’ is the starting address. ‘length’ is the size
of the memory region in bytes. ‘type’ is the variety of address range represented, where a
value of 1 indicates available ram, and all other values currently indicated a reserved area.

The map provided is guaranteed to list all standard ram that should be available
for normal use.

If bit 7 in the ‘flags’ is set, then the ‘drives_*’ fields are valid, and indicate the
address of the physical address of the first drive structure and the size of drive structures.
‘drives_addr’ is the address, and ‘drives_length’ is the total size of drive structures.
Note that ‘drives_length’ may be zero. Each drive structure is formatted as follows:

+-------------------+

0 | size |

+-------------------+

4 | drive_number |

+-------------------+

5 | drive_mode |

+-------------------+

6 | drive_cylinders |

8 | drive_heads |

9 | drive_sectors |

+-------------------+

10 - xx | drive_ports |

+-------------------+

The ‘size’ field specifies the size of this structure. The size varies, depending on the
number of ports. Note that the size may not be equal to (10 + 2 * the number of ports),
because of an alignment.

The ‘drive_number’ field contains the BIOS drive number. The ‘drive_mode’ field
represents the access mode used by the boot loader. Currently, the following modes are
defined:

‘0’ CHS mode (traditional cylinder/head/sector addressing mode).

‘1’ LBA mode (Logical Block Addressing mode).

The three fields, ‘drive_cylinders’, ‘drive_heads’ and ‘drive_sectors’, indicate
the geometry of the drive detected by the bios. ‘drive_cylinders’ contains the number of
the cylinders. ‘drive_heads’ contains the number of the heads. ‘drive_sectors’ contains
the number of the sectors per track.

The ‘drive_ports’ field contains the array of the I/O ports used for the drive in the
bios code. The array consists of zero or more unsigned two-bytes integers, and is terminated

Chapter 3: The exact definitions of Multiboot Specification 13

with zero. Note that the array may contain any number of I/O ports that are not related
to the drive actually (such as dma controller’s ports).

If bit 8 in the ‘flags’ is set, then the ‘config_table’ field is valid, and indicates
the address of the rom configuration table returned by the GET CONFIGURATION bios
call. If the bios call fails, then the size of the table must be zero.

If bit 9 in the ‘flags’ is set, the ‘boot_loader_name’ field is valid, and contains the
physical address of the name of a boot loader booting the kernel. The name is a normal
C-style zero-terminated string.

If bit 10 in the ‘flags’ is set, the ‘apm_table’ field is valid, and contains the physical
address of an apm table defined as below:

+----------------------+

0 | version |

2 | cseg |

4 | offset |

8 | cseg_16 |

10 | dseg |

12 | flags |

14 | cseg_len |

16 | cseg_16_len |

18 | dseg_len |

+----------------------+

The fields ‘version’, ‘cseg’, ‘offset’, ‘cseg_16’, ‘dseg’, ‘flags’, ‘cseg_len’,
‘cseg_16_len’, ‘dseg_len’ indicate the version number, the protected mode 32-bit code
segment, the offset of the entry point, the protected mode 16-bit code segment, the
protected mode 16-bit data segment, the flags, the length of the protected mode 32-bit
code segment, the length of the protected mode 16-bit code segment, and the length of
the protected mode 16-bit data segment, respectively. Only the field ‘offset’ is 4 bytes,
and the others are 2 bytes. See Advanced Power Management (APM) BIOS Interface
Specification, for more information.

If bit 11 in the ‘flags’ is set, the graphics table is available. This must only be done
if the kernel has indicated in the ‘Multiboot Header’ that it accepts a graphics mode.

The fields ‘vbe_control_info’ and ‘vbe_mode_info’ contain the physical addresses
of vbe control information returned by the vbe Function 00h and vbe mode information
returned by the vbe Function 01h, respectively.

The field ‘vbe_mode’ indicates current video mode in the format specified in vbe 3.0.

The rest fields ‘vbe_interface_seg’, ‘vbe_interface_off’, and
‘vbe_interface_len’ contain the table of a protected mode interface defined in
vbe 2.0+. If this information is not available, those fields contain zero. Note that vbe 3.0
defines another protected mode interface which is incompatible with the old one. If you
want to use the new protected mode interface, you will have to find the table yourself.

The fields for the graphics table are designed for vbe, but Multiboot boot loaders
may simulate vbe on non-vbe modes, as if they were vbe modes.

http://www.microsoft.com/hwdev/busbios/amp_12.htm
http://www.microsoft.com/hwdev/busbios/amp_12.htm

14 Multiboot Specification version 0.6.96

4 Examples

Caution: The following items are not part of the specification document, but are included
for prospective operating system and boot loader writers.

4.1 Notes on PC

In reference to bit 0 of the ‘flags’ parameter in the Multiboot information structure, if the
bootloader in question uses older bios interfaces, or the newest ones are not available (see
description about bit 6), then a maximum of either 15 or 63 megabytes of memory may be
reported. It is highly recommended that boot loaders perform a thorough memory probe.

In reference to bit 1 of the ‘flags’ parameter in the Multiboot information structure,
it is recognized that determination of which bios drive maps to which device driver in an
operating system is non-trivial, at best. Many kludges have been made to various operating
systems instead of solving this problem, most of them breaking under many conditions.
To encourage the use of general-purpose solutions to this problem, there are 2 bios device
mapping techniques (see Section 4.2 [BIOS device mapping techniques], page 14).

In reference to bit 6 of the ‘flags’ parameter in the Multiboot information structure,
it is important to note that the data structure used there (starting with ‘BaseAddrLow’) is
the data returned by the INT 15h, AX=E820h — Query System Address Map call. See
See Section “Query System Address Map” in The GRUB Manual, for more information.
The interface here is meant to allow a boot loader to work unmodified with any reasonable
extensions of the bios interface, passing along any extra data to be interpreted by the
operating system as desired.

4.2 BIOS device mapping techniques

Both of these techniques should be usable from any PC operating system, and neither
require any special support in the drivers themselves. This section will be flushed out into
detailed explanations, particularly for the I/O restriction technique.

The general rule is that the data comparison technique is the quick and dirty solution.
It works most of the time, but doesn’t cover all the bases, and is relatively simple.

The I/O restriction technique is much more complex, but it has potential to solve
the problem under all conditions, plus allow access of the remaining bios devices when not
all of them have operating system drivers.

4.2.1 Data comparison technique

Before activating any of the device drivers, gather enough data from similar sectors on each
of the disks such that each one can be uniquely identified.

After activating the device drivers, compare data from the drives using the operating
system drivers. This should hopefully be sufficient to provide such a mapping.

Problems:

1. The data on some bios devices might be identical (so the part reading the drives from
the bios should have some mechanism to give up).

2. There might be extra drives not accessible from the bios which are identical to some
drive used by the bios (so it should be capable of giving up there as well).

Chapter 4: Examples 15

4.2.2 I/O restriction technique

This first step may be unnecessary, but first create copy-on-write mappings for the device
drivers writing into pc ram. Keep the original copies for the clean bios virtual machine to
be created later.

For each device driver brought online, determine which bios devices become inac-
cessible by:

1. Create a clean bios virtual machine.

2. Set the I/O permission map for the I/O area claimed by the device driver to no per-
missions (neither read nor write).

3. Access each device.

4. Record which devices succeed, and those which try to access the restricted I/O areas
(hopefully, this will be an xor situation).

For each device driver, given how many of the bios devices were subsumed by it
(there should be no gaps in this list), it should be easy to determine which devices on the
controller these are.

In general, you have at most 2 disks from each controller given bios numbers, but
they pretty much always count from the lowest logically numbered devices on the controller.

4.3 Example OS code

In this distribution, the example Multiboot kernel ‘kernel’ is included. The kernel just
prints out the Multiboot information structure on the screen, so you can make use of the
kernel to test a Multiboot-compliant boot loader and for reference to how to implement a
Multiboot kernel. The source files can be found under the directory ‘doc’ in the Multiboot
source distribution.

The kernel ‘kernel’ consists of only three files: ‘boot.S’, ‘kernel.c’ and
‘multiboot.h’. The assembly source ‘boot.S’ is written in GAS (see Section “GNU
assembler” in The GNU assembler), and contains the Multiboot information structure to
comply with the specification. When a Multiboot-compliant boot loader loads and execute
it, it initialize the stack pointer and EFLAGS, and then call the function cmain defined in
‘kernel.c’. If cmain returns to the callee, then it shows a message to inform the user of
the halt state and stops forever until you push the reset key. The file ‘kernel.c’ contains
the function cmain, which checks if the magic number passed by the boot loader is valid
and so on, and some functions to print messages on the screen. The file ‘multiboot.h’
defines some macros, such as the magic number for the Multiboot header, the Multiboot
header structure and the Multiboot information structure.

4.3.1 multiboot.h

This is the source code in the file ‘multiboot.h’:

/* multiboot.h - Multiboot header file. */

/* Copyright (C) 1999,2003,2007,2008,2009 Free Software Foundation, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the

16 Multiboot Specification version 0.6.96

* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUTWARRANTYOF ANYKIND, EX-
PRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THEWARRANTIES OFMERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE ANDNONINFRINGEMENT. IN NO EVENT SHALL ANY
* DEVELOPER OR DISTRIBUTOR BE LIABLE FOR ANY CLAIM, DAM-
AGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR
* IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEAL-
INGS IN THE SOFTWARE.
*/

#ifndef MULTIBOOT_HEADER

#define MULTIBOOT_HEADER 1

/* How many bytes from the start of the file we search for the header. */

#define MULTIBOOT_SEARCH 8192

/* The magic field should contain this. */

#define MULTIBOOT_HEADER_MAGIC 0x1BADB002

/* This should be in %eax. */

#define MULTIBOOT_BOOTLOADER_MAGIC 0x2BADB002

/* The bits in the required part of flags field we don’t support. */

#define MULTIBOOT_UNSUPPORTED 0x0000fffc

/* Alignment of multiboot modules. */

#define MULTIBOOT_MOD_ALIGN 0x00001000

/* Alignment of the multiboot info structure. */

#define MULTIBOOT_INFO_ALIGN 0x00000004

/* Flags set in the ’flags’ member of the multiboot header. */

/* Align all boot modules on i386 page (4KB) boundaries. */

#define MULTIBOOT_PAGE_ALIGN 0x00000001

/* Must pass memory information to OS. */

#define MULTIBOOT_MEMORY_INFO 0x00000002

Chapter 4: Examples 17

/* Must pass video information to OS. */

#define MULTIBOOT_VIDEO_MODE 0x00000004

/* This flag indicates the use of the address fields in the header. */

#define MULTIBOOT_AOUT_KLUDGE 0x00010000

/* Flags to be set in the ’flags’ member of the multiboot info structure. */

/* is there basic lower/upper memory information? */

#define MULTIBOOT_INFO_MEMORY 0x00000001

/* is there a boot device set? */

#define MULTIBOOT_INFO_BOOTDEV 0x00000002

/* is the command-line defined? */

#define MULTIBOOT_INFO_CMDLINE 0x00000004

/* are there modules to do something with? */

#define MULTIBOOT_INFO_MODS 0x00000008

/* These next two are mutually exclusive */

/* is there a symbol table loaded? */

#define MULTIBOOT_INFO_AOUT_SYMS 0x00000010

/* is there an ELF section header table? */

#define MULTIBOOT_INFO_ELF_SHDR 0X00000020

/* is there a full memory map? */

#define MULTIBOOT_INFO_MEM_MAP 0x00000040

/* Is there drive info? */

#define MULTIBOOT_INFO_DRIVE_INFO 0x00000080

/* Is there a config table? */

#define MULTIBOOT_INFO_CONFIG_TABLE 0x00000100

/* Is there a boot loader name? */

#define MULTIBOOT_INFO_BOOT_LOADER_NAME 0x00000200

/* Is there a APM table? */

#define MULTIBOOT_INFO_APM_TABLE 0x00000400

/* Is there video information? */

#define MULTIBOOT_INFO_VIDEO_INFO 0x00000800

#ifndef ASM_FILE

typedef unsigned short multiboot_uint16_t;

typedef unsigned int multiboot_uint32_t;

18 Multiboot Specification version 0.6.96

typedef unsigned long long multiboot_uint64_t;

struct multiboot_header

{

/* Must be MULTIBOOT MAGIC - see above. */

multiboot_uint32_t magic;

/* Feature flags. */

multiboot_uint32_t flags;

/* The above fields plus this one must equal 0 mod 2^32. */

multiboot_uint32_t checksum;

/* These are only valid if MULTIBOOT AOUT KLUDGE is set. */

multiboot_uint32_t header_addr;

multiboot_uint32_t load_addr;

multiboot_uint32_t load_end_addr;

multiboot_uint32_t bss_end_addr;

multiboot_uint32_t entry_addr;

/* These are only valid if MULTIBOOT VIDEO MODE is set. */

multiboot_uint32_t mode_type;

multiboot_uint32_t width;

multiboot_uint32_t height;

multiboot_uint32_t depth;

};

/* The symbol table for a.out. */

struct multiboot_aout_symbol_table

{

multiboot_uint32_t tabsize;

multiboot_uint32_t strsize;

multiboot_uint32_t addr;

multiboot_uint32_t reserved;

};

typedef struct multiboot_aout_symbol_table multiboot_aout_symbol_table_t;

/* The section header table for ELF. */

struct multiboot_elf_section_header_table

{

multiboot_uint32_t num;

multiboot_uint32_t size;

multiboot_uint32_t addr;

multiboot_uint32_t shndx;

};

typedef struct multiboot_elf_section_header_table multiboot_elf_section_header_table_t;

Chapter 4: Examples 19

struct multiboot_info

{

/* Multiboot info version number */

multiboot_uint32_t flags;

/* Available memory from BIOS */

multiboot_uint32_t mem_lower;

multiboot_uint32_t mem_upper;

/* "root" partition */

multiboot_uint32_t boot_device;

/* Kernel command line */

multiboot_uint32_t cmdline;

/* Boot-Module list */

multiboot_uint32_t mods_count;

multiboot_uint32_t mods_addr;

union

{

multiboot_aout_symbol_table_t aout_sym;

multiboot_elf_section_header_table_t elf_sec;

} u;

/* Memory Mapping buffer */

multiboot_uint32_t mmap_length;

multiboot_uint32_t mmap_addr;

/* Drive Info buffer */

multiboot_uint32_t drives_length;

multiboot_uint32_t drives_addr;

/* ROM configuration table */

multiboot_uint32_t config_table;

/* Boot Loader Name */

multiboot_uint32_t boot_loader_name;

/* APM table */

multiboot_uint32_t apm_table;

/* Video */

multiboot_uint32_t vbe_control_info;

multiboot_uint32_t vbe_mode_info;

multiboot_uint16_t vbe_mode;

multiboot_uint16_t vbe_interface_seg;

20 Multiboot Specification version 0.6.96

multiboot_uint16_t vbe_interface_off;

multiboot_uint16_t vbe_interface_len;

};

typedef struct multiboot_info multiboot_info_t;

struct multiboot_mmap_entry

{

multiboot_uint32_t size;

multiboot_uint64_t addr;

multiboot_uint64_t len;

#define MULTIBOOT_MEMORY_AVAILABLE 1

#define MULTIBOOT_MEMORY_RESERVED 2

multiboot_uint32_t type;

} __attribute__((packed));

typedef struct multiboot_mmap_entry multiboot_memory_map_t;

struct multiboot_mod_list

{

/* the memory used goes from bytes ’mod start’ to ’mod end-1’ inclusive */

multiboot_uint32_t mod_start;

multiboot_uint32_t mod_end;

/* Module command line */

multiboot_uint32_t cmdline;

/* padding to take it to 16 bytes (must be zero) */

multiboot_uint32_t pad;

};

typedef struct multiboot_mod_list multiboot_module_t;

#endif /* ! ASM FILE */

#endif /* ! MULTIBOOT HEADER */

4.3.2 boot.S

In the file ‘boot.S’:

/* boot.S - bootstrap the kernel */

/* Copyright (C) 1999, 2001 Free Software Foundation, Inc.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of

Chapter 4: Examples 21

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */

#define ASM_FILE 1

#include <multiboot.h>

/* C symbol format. HAVE ASM USCORE is defined by configure. */

#ifdef HAVE_ASM_USCORE

define EXT_C(sym) _ ## sym

#else

define EXT_C(sym) sym

#endif

/* The size of our stack (16KB). */

#define STACK_SIZE 0x4000

/* The flags for the Multiboot header. */

#ifdef __ELF__

define MULTIBOOT_HEADER_FLAGS 0x00000003

#else

define MULTIBOOT_HEADER_FLAGS 0x00010003

#endif

.text

.globl start, _start

start:

_start:

jmp multiboot_entry

/* Align 32 bits boundary. */

.align 4

/* Multiboot header. */

multiboot_header:

/* magic */

.long MULTIBOOT_HEADER_MAGIC

/* flags */

.long MULTIBOOT_HEADER_FLAGS

/* checksum */

.long -(MULTIBOOT_HEADER_MAGIC + MULTIBOOT_HEADER_FLAGS)

#ifndef __ELF__

/* header addr */

22 Multiboot Specification version 0.6.96

.long multiboot_header

/* load addr */

.long _start

/* load end addr */

.long _edata

/* bss end addr */

.long _end

/* entry addr */

.long multiboot_entry

#endif /* ! ELF */

multiboot_entry:

/* Initialize the stack pointer. */

movl $(stack + STACK_SIZE), %esp

/* Reset EFLAGS. */

pushl $0

popf

/* Push the pointer to the Multiboot information structure. */

pushl %ebx

/* Push the magic value. */

pushl %eax

/* Now enter the C main function... */

call EXT_C(cmain)

/* Halt. */

pushl $halt_message

call EXT_C(printf)

loop: hlt

jmp loop

halt_message:

.asciz "Halted."

/* Our stack area. */

.comm stack, STACK_SIZE

4.3.3 kernel.c

And, in the file ‘kernel.c’:

/* kernel.c - the C part of the kernel */

/* Copyright (C) 1999 Free Software Foundation, Inc.

This program is free software; you can redistribute it and/or modify

Chapter 4: Examples 23

it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */

#include <multiboot.h>

/* Macros. */

/* Check if the bit BIT in FLAGS is set. */

#define CHECK_FLAG(flags,bit) ((flags) & (1 << (bit)))

/* Some screen stuff. */

/* The number of columns. */

#define COLUMNS 80

/* The number of lines. */

#define LINES 24

/* The attribute of an character. */

#define ATTRIBUTE 7

/* The video memory address. */

#define VIDEO 0xB8000

/* Variables. */

/* Save the X position. */

static int xpos;

/* Save the Y position. */

static int ypos;

/* Point to the video memory. */

static volatile unsigned char *video;

/* Forward declarations. */

void cmain (unsigned long magic, unsigned long addr);

static void cls (void);

static void itoa (char *buf, int base, int d);

static void putchar (int c);

void printf (const char *format, ...);

/* Check if MAGIC is valid and print the Multiboot information structure
pointed by ADDR. */

24 Multiboot Specification version 0.6.96

void

cmain (unsigned long magic, unsigned long addr)

{

multiboot_info_t *mbi;

/* Clear the screen. */

cls ();

/* Am I booted by a Multiboot-compliant boot loader? */

if (magic != MULTIBOOT_BOOTLOADER_MAGIC)

{

printf ("Invalid magic number: 0x%x\n", (unsigned) magic);

return;

}

/* Set MBI to the address of the Multiboot information structure. */

mbi = (multiboot_info_t *) addr;

/* Print out the flags. */

printf ("flags = 0x%x\n", (unsigned) mbi->flags);

/* Are mem * valid? */

if (CHECK_FLAG (mbi->flags, 0))

printf ("mem_lower = %uKB, mem_upper = %uKB\n",

(unsigned) mbi->mem_lower, (unsigned) mbi->mem_upper);

/* Is boot device valid? */

if (CHECK_FLAG (mbi->flags, 1))

printf ("boot_device = 0x%x\n", (unsigned) mbi->boot_device);

/* Is the command line passed? */

if (CHECK_FLAG (mbi->flags, 2))

printf ("cmdline = %s\n", (char *) mbi->cmdline);

/* Are mods * valid? */

if (CHECK_FLAG (mbi->flags, 3))

{

multiboot_module_t *mod;

int i;

printf ("mods_count = %d, mods_addr = 0x%x\n",

(int) mbi->mods_count, (int) mbi->mods_addr);

for (i = 0, mod = (multiboot_module_t *) mbi->mods_addr;

i < mbi->mods_count;

i++, mod++)

printf (" mod_start = 0x%x, mod_end = 0x%x, cmdline = %s\n",

(unsigned) mod->mod_start,

Chapter 4: Examples 25

(unsigned) mod->mod_end,

(char *) mod->cmdline);

}

/* Bits 4 and 5 are mutually exclusive! */

if (CHECK_FLAG (mbi->flags, 4) && CHECK_FLAG (mbi->flags, 5))

{

printf ("Both bits 4 and 5 are set.\n");

return;

}

/* Is the symbol table of a.out valid? */

if (CHECK_FLAG (mbi->flags, 4))

{

multiboot_aout_symbol_table_t *multiboot_aout_sym = &(mbi->u.aout_sym);

printf ("multiboot_aout_symbol_table: tabsize = 0x%0x, "

"strsize = 0x%x, addr = 0x%x\n",

(unsigned) multiboot_aout_sym->tabsize,

(unsigned) multiboot_aout_sym->strsize,

(unsigned) multiboot_aout_sym->addr);

}

/* Is the section header table of ELF valid? */

if (CHECK_FLAG (mbi->flags, 5))

{

multiboot_elf_section_header_table_t *multiboot_elf_sec = &(mbi->u.elf_sec);

printf ("multiboot_elf_sec: num = %u, size = 0x%x,"

" addr = 0x%x, shndx = 0x%x\n",

(unsigned) multiboot_elf_sec->num, (unsigned) multiboot_elf_sec->size,

(unsigned) multiboot_elf_sec->addr, (unsigned) multiboot_elf_sec->shndx);

}

/* Are mmap * valid? */

if (CHECK_FLAG (mbi->flags, 6))

{

multiboot_memory_map_t *mmap;

printf ("mmap_addr = 0x%x, mmap_length = 0x%x\n",

(unsigned) mbi->mmap_addr, (unsigned) mbi->mmap_length);

for (mmap = (multiboot_memory_map_t *) mbi->mmap_addr;

(unsigned long) mmap < mbi->mmap_addr + mbi->mmap_length;

mmap = (multiboot_memory_map_t *) ((unsigned long) mmap

+ mmap->size + sizeof (mmap->size)))

printf (" size = 0x%x, base_addr = 0x%x%x,"

" length = 0x%x%x, type = 0x%x\n",

26 Multiboot Specification version 0.6.96

(unsigned) mmap->size,

mmap->addr >> 32,

mmap->addr & 0xffffffff,

mmap->len >> 32,

mmap->len & 0xffffffff,

(unsigned) mmap->type);

}

}

/* Clear the screen and initialize VIDEO, XPOS and YPOS. */

static void

cls (void)

{

int i;

video = (unsigned char *) VIDEO;

for (i = 0; i < COLUMNS * LINES * 2; i++)

*(video + i) = 0;

xpos = 0;

ypos = 0;

}

/* Convert the integer D to a string and save the string in BUF. If
BASE is equal to ’d’, interpret that D is decimal, and if BASE is
equal to ’x’, interpret that D is hexadecimal. */

static void

itoa (char *buf, int base, int d)

{

char *p = buf;

char *p1, *p2;

unsigned long ud = d;

int divisor = 10;

/* If %d is specified and D is minus, put ‘-’ in the head. */

if (base == ’d’ && d < 0)

{

*p++ = ’-’;

buf++;

ud = -d;

}

else if (base == ’x’)

divisor = 16;

/* Divide UD by DIVISOR until UD == 0. */

do

Chapter 4: Examples 27

{

int remainder = ud % divisor;

*p++ = (remainder < 10) ? remainder + ’0’ : remainder + ’a’ - 10;

}

while (ud /= divisor);

/* Terminate BUF. */

*p = 0;

/* Reverse BUF. */

p1 = buf;

p2 = p - 1;

while (p1 < p2)

{

char tmp = *p1;

*p1 = *p2;

*p2 = tmp;

p1++;

p2--;

}

}

/* Put the character C on the screen. */

static void

putchar (int c)

{

if (c == ’\n’ || c == ’\r’)

{

newline:

xpos = 0;

ypos++;

if (ypos >= LINES)

ypos = 0;

return;

}

*(video + (xpos + ypos * COLUMNS) * 2) = c & 0xFF;

*(video + (xpos + ypos * COLUMNS) * 2 + 1) = ATTRIBUTE;

xpos++;

if (xpos >= COLUMNS)

goto newline;

}

/* Format a string and print it on the screen, just like the libc
function printf. */

28 Multiboot Specification version 0.6.96

void

printf (const char *format, ...)

{

char **arg = (char **) &format;

int c;

char buf[20];

arg++;

while ((c = *format++) != 0)

{

if (c != ’%’)

putchar (c);

else

{

char *p;

c = *format++;

switch (c)

{

case ’d’:

case ’u’:

case ’x’:

itoa (buf, c, *((int *) arg++));

p = buf;

goto string;

break;

case ’s’:

p = *arg++;

if (! p)

p = "(null)";

string:

while (*p)

putchar (*p++);

break;

default:

putchar (*((int *) arg++));

break;

}

}

}

}

Chapter 4: Examples 29

4.3.4 Other Multiboot kernels

Other useful information should be available in Multiboot kernels, such as GNU Mach and
Fiasco http://os.inf.tu-dresden.de/fiasco/. And, it is worth mentioning the OSKit
http://www.cs.utah.edu/projects/flux/oskit/, which provides a library supporting
the specification.

4.4 Example boot loader code

The GNU GRUB (see Section “GRUB” in The GRUB manual) project is a Multiboot-
compliant boot loader, supporting all required and many optional features present in this
specification. A public release has not been made, but the test release is available from:

ftp://alpha.gnu.org/gnu/grub

See the webpage http://www.gnu.org/software/grub/grub.html, for more infor-
mation.

http://os.inf.tu-dresden.de/fiasco/
http://www.cs.utah.edu/projects/flux/oskit/
ftp://alpha.gnu.org/gnu/grub
http://www.gnu.org/software/grub/grub.html

30 Multiboot Specification version 0.6.96

5 The change log of this specification

0.7

• Multiboot Standard is renamed to Multiboot Specification.

• Graphics fields are added to Multiboot header.

• BIOS drive information, BIOS configuration table, the name of a boot
loader, APM information, and graphics information are added to Multiboot
information.

• Rewritten in Texinfo format.

• Rewritten, using more strict words.

• The maintainer changes to the GNU GRUB maintainer team
bug-grub@gnu.org, from Bryan Ford and Erich Stefan Boleyn.

• The byte order of the ‘boot_device’ in Multiboot information is reversed.
This was a mistake.

• The offset of the address fields were wrong.

• The format is adapted to a newer Texinfo, and the version number is
specified more explicitly in the title.

0.6

• A few wording changes.

• Header checksum.

• Classification of machine state passed to an operating system.

0.5

• Name change.

0.4

• Major changes plus HTMLification.

mailto:bug-grub@gnu.org

Index 31

Index

(Index is nonexistent)

i

Table of Contents

1 Introduction to Multiboot Specification 1
1.1 The background of Multiboot Specification . 1
1.2 The target architecture . 1
1.3 The target operating systems . 1
1.4 Boot sources . 1
1.5 Configure an operating system at boot-time . 2
1.6 How to make OS development easier . 2
1.7 Boot modules . 2

2 The definitions of terms used through the
specification . 4

3 The exact definitions of Multiboot
Specification . 5

3.1 OS image format . 5
3.1.1 The layout of Multiboot header . 5
3.1.2 The magic fields of Multiboot header . 5
3.1.3 The address fields of Multiboot header . 6
3.1.4 The graphics fields of Multiboot header . 7

3.2 Machine state . 7
3.3 Boot information format . 8

4 Examples . 14
4.1 Notes on PC . 14
4.2 BIOS device mapping techniques . 14

4.2.1 Data comparison technique . 14
4.2.2 I/O restriction technique . 15

4.3 Example OS code . 15
4.3.1 multiboot.h . 15
4.3.2 boot.S . 20
4.3.3 kernel.c . 22
4.3.4 Other Multiboot kernels . 29

4.4 Example boot loader code . 29

5 The change log of this specification 30

Index . 31

	Introduction to Multiboot Specification
	The background of Multiboot Specification
	The target architecture
	The target operating systems
	Boot sources
	Configure an operating system at boot-time
	How to make OS development easier
	Boot modules

	The definitions of terms used through the specification
	The exact definitions of Multiboot Specification
	OS image format
	The layout of Multiboot header
	The magic fields of Multiboot header
	The address fields of Multiboot header
	The graphics fields of Multiboot header

	Machine state
	Boot information format

	Examples
	Notes on PC
	BIOS device mapping techniques
	Data comparison technique
	I/O restriction technique

	Example OS code
	multiboot.h
	boot.S
	kernel.c
	Other Multiboot kernels

	Example boot loader code

	The change log of this specification
	Index

