//----------------------------------------------------------------------------//
// OS on Kaleid //
// //
// Desc: Mapping and checking memory related functions //
// //
// //
// Copyright © 2018-2021 The OS/K Team //
// //
// This file is part of OS/K. //
// //
// OS/K is free software: you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation, either version 3 of the License, or //
// any later version. //
// //
// OS/K is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY//without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with OS/K. If not, see . //
//----------------------------------------------------------------------------//
#include
#include
#include
#include
// Initializes globally the memory map
MemoryMap_t memoryMap = { 0 };
static error_t InitMemoryMap(void);
//
// Initilization of the memory map, and computation of the available ram size
//
void MmInitMemoryMap(void)
{
error_t rc;
rc = InitMemoryMap();
if (rc)
KeStartPanic("Failed to initialize the memory map\nError : %s",
strerror(rc) );
}
static error_t InitMemoryMap(void)
{
multiboot_memory_map_t *currentEntry;
multiboot_memory_map_t *mapEnd;
uint i = 0;
// sanity checks
if (!BtMemoryInfo.memValid && BtMemoryInfo.mapValid)
return ENXIO;
if ((BtMemoryInfo.upMemory / (MB/KB)) <= MINIMUM_RAM_SIZE)
return ENOMEM;
// Ok then we can work
// the memory map provided by GRUB via the BIOS
currentEntry = (multiboot_memory_map_t*)BtMemoryInfo.mapAddr;
// End address of the map
mapEnd = (multiboot_memory_map_t*)
((ulong)currentEntry + (ulong)BtMemoryInfo.mapLength);
DebugLog("Initiliazing memory map...\n");
// fill the map
while (currentEntry < mapEnd) {
// memory zone address
memoryMap.entry[i].addr = (void*)((ullong)currentEntry->addr_low +
(((ullong)currentEntry->addr_high) << 32 ));
// memory zone size in bytes
memoryMap.entry[i].length = (ulong)currentEntry->len_low +
(((ulong)currentEntry->len_high) << 32);
// memory availability
memoryMap.entry[i].type = (uint)currentEntry->type;
// Adding the size to the size (yup)
memoryMap.length++;
DebugLog("Zone: %lp type %d with length: %4luMB+%4luKB+%4luB\n",
memoryMap.entry[i].addr,
memoryMap.entry[i].type,
_ADDR_TO_MB(memoryMap.entry[i].length),
_ADDR_TO_KB(memoryMap.entry[i].length),
_ADDR_TO_B(memoryMap.entry[i].length)
);
// moving up !
currentEntry = (multiboot_memory_map_t*) ((ulong)currentEntry +
currentEntry->size + sizeof(currentEntry->size));
i++;
}
// compute the free ram size
for (i = 0; i < memoryMap.length; i++) {
if (memoryMap.entry[i].type == AVAILABLE_ZONE) {
memoryMap.freeRamSize += memoryMap.entry[i].length;
} else {
memoryMap.nonfreeRamSize += memoryMap.entry[i].length;
}
}
// Trully strange if it happens...
if (memoryMap.freeRamSize < MINIMUM_RAM_SIZE)
return ENOMEM;
DebugLog("Available RAM size : %u MB\n",
memoryMap.freeRamSize / MB);
return EOK;
}
size_t MmGetAvailZoneSize(void *start)
{
uint i;
// Because the kernel is the kernel
if (start < BtLoaderInfo.stackEndAddr + 16)
return 0;
// Search the zone where the start address is
for (i = 0; i < memoryMap.length; i++) {
// if the address is in an available zone, we can return the length
if (
memoryMap.entry[i].type == AVAILABLE_ZONE &&
(ulong)start >= (ulong)memoryMap.entry[i].addr &&
(ulong)start < ((ulong)memoryMap.entry[i].addr +
(ulong)memoryMap.entry[i].length)
) {
return (size_t)((ulong)memoryMap.entry[i].length - (ulong)start);
}
}
// If there is no zone, we return a 0 size
return 0;
}
bool MmIsBusyZone(void *start)
{
uint i;
// Because the kernel is the kernel
if (start < BtLoaderInfo.stackEndAddr + 16)
return 0;
// Search the zone where the start address is
for (i = 0; i < memoryMap.length; i++) {
// if the address is in an available zone, we can return the length
if (
memoryMap.entry[i].type != AVAILABLE_ZONE &&
(ulong)start >= (ulong)memoryMap.entry[i].addr &&
(ulong)start < ((ulong)memoryMap.entry[i].addr +
(ulong)memoryMap.entry[i].length)
) {
return 1;
}
}
// The zone is free
return 0;
}
bool MmIsFailingZoneSize(void *start)
{
uint i;
// Because the kernel is the kernel
if (start < BtLoaderInfo.stackEndAddr + 16)
return 0;
// Search the zone where the start address is
for (i = 0; i < memoryMap.length; i++) {
// if the address is in a failing zone, we can return 1
if (
(memoryMap.entry[i].type == BADRAM_ZONE) &&
(ulong)start >= (ulong)memoryMap.entry[i].addr &&
(ulong)start < ((ulong)memoryMap.entry[i].addr +
(ulong)memoryMap.entry[i].length)
) {
return 1;
}
}
// If there is no zone, we return a 0 size
return 0;
}
void *MmGetFirstAvailZone(void *start)
{
uint i;
void *current = 0;
// Because the kernel is the kernel
if ((ulong)start < (ulong)BtLoaderInfo.stackEndAddr+4096) {
return MmGetFirstAvailZone(BtLoaderInfo.stackEndAddr+4096);
}
// Search the zone where the start address is
for (i = 0; i < memoryMap.length; i++) {
// if the address is in an available zone, we can return the start address
if (
memoryMap.entry[i].type == AVAILABLE_ZONE &&
(ulong)start >= (ulong)memoryMap.entry[i].addr &&
(ulong)start < ((ulong)memoryMap.entry[i].addr +
(ulong)memoryMap.entry[i].length)
) {
current = start;
break;
}
}
if (current)
return current;
// Search the first zone from start
for (i = 0; i < memoryMap.length; i++) {
// Return the first zone that is after start
if (
memoryMap.entry[i].type == AVAILABLE_ZONE &&
(ulong)start <= (ulong)memoryMap.entry[i].addr
) {
current = memoryMap.entry[i].addr;
break;
}
}
return current;
}
void MmPrintMemoryMap(void)
{
char avStr[15];
extern int shcol;
for (uint i=0; i < memoryMap.length; i++) {
switch (memoryMap.entry[i].type) {
case AVAILABLE_ZONE: snprintf(avStr, 15, "%CAvailable%C",
VGA_COLOR_GREEN,
shcol);
break;
case RESERVED_ZONE: snprintf(avStr, 15, "%CReserved %C",
VGA_COLOR_RED,
shcol);
break;
case ACPI_ZONE: snprintf(avStr, 15, "%CACPI %C",
VGA_COLOR_LIGHT_BROWN,
shcol);
break;
case NVS_ZONE: snprintf(avStr, 15, "%CNVS %C",
VGA_COLOR_LIGHT_BROWN,
shcol);
break;
case BADRAM_ZONE: snprintf(avStr, 15, "%CBAD RAM %C",
VGA_COLOR_LIGHT_RED,
shcol);
break;
default:;
}
ulong len = memoryMap.entry[i].length;
KernLog("%Cmem zone:%C %lp %s %Cwith length:%C %4lu%CMB"
"+%C%4lu%CKB+%C%4lu%CB\n",
VGA_COLOR_DARK_GREY,
shcol,
memoryMap.entry[i].addr, avStr,
VGA_COLOR_DARK_GREY,
shcol,
_ADDR_TO_MB(len),
VGA_COLOR_DARK_GREY,
shcol,
_ADDR_TO_KB(len),
VGA_COLOR_DARK_GREY,
shcol,
_ADDR_TO_B(len),
VGA_COLOR_DARK_GREY,
shcol
);
}
KernLog("\n");
}