mirror of
https://gitlab.os-k.eu/os-k-team/os-k.git
synced 2023-08-25 14:03:10 +02:00
290 lines
9.5 KiB
C
290 lines
9.5 KiB
C
//----------------------------------------------------------------------------//
|
|
// OS on Kaleid //
|
|
// //
|
|
// Desc: Mapping and checking memory related functions //
|
|
// //
|
|
// //
|
|
// Copyright © 2018-2020 The OS/K Team //
|
|
// //
|
|
// This file is part of OS/K. //
|
|
// //
|
|
// OS/K is free software: you can redistribute it and/or modify //
|
|
// it under the terms of the GNU General Public License as published by //
|
|
// the Free Software Foundation, either version 3 of the License, or //
|
|
// any later version. //
|
|
// //
|
|
// OS/K is distributed in the hope that it will be useful, //
|
|
// but WITHOUT ANY WARRANTY//without even the implied warranty of //
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
|
|
// GNU General Public License for more details. //
|
|
// //
|
|
// You should have received a copy of the GNU General Public License //
|
|
// along with OS/K. If not, see <https://www.gnu.org/licenses/>. //
|
|
//----------------------------------------------------------------------------//
|
|
|
|
#include <mm/map.h>
|
|
#include <init/boot.h>
|
|
#include <init/mboot.h>
|
|
#include <io/vga.h>
|
|
|
|
// Initializes globally the memory map
|
|
MemoryMap_t memoryMap = { 0 };
|
|
|
|
static error_t InitMemoryMap(void);
|
|
|
|
//
|
|
// Initilization of the memory map, and computation of the available ram size
|
|
//
|
|
void MmInitMemoryMap(void)
|
|
{
|
|
error_t rc;
|
|
|
|
rc = InitMemoryMap();
|
|
|
|
if (rc)
|
|
KeStartPanic("Failed to initialize the memory map\nError : %s",
|
|
strerror(rc) );
|
|
}
|
|
|
|
static error_t InitMemoryMap(void)
|
|
{
|
|
multiboot_memory_map_t *currentEntry;
|
|
multiboot_memory_map_t *mapEnd;
|
|
uint i = 0;
|
|
|
|
// sanity checks
|
|
if (!BtMemoryInfo.memValid && BtMemoryInfo.mapValid)
|
|
return ENXIO;
|
|
|
|
if ((BtMemoryInfo.upMemory / (MB/KB)) <= MINIMUM_RAM_SIZE)
|
|
return ENOMEM;
|
|
|
|
// Ok then we can work
|
|
|
|
// the memory map provided by GRUB via the BIOS
|
|
currentEntry = (multiboot_memory_map_t*)BtMemoryInfo.mapAddr;
|
|
// End address of the map
|
|
mapEnd = (multiboot_memory_map_t*)
|
|
((ulong)currentEntry + (ulong)BtMemoryInfo.mapLength);
|
|
|
|
DebugLog("Initiliazing memory map...\n");
|
|
|
|
// fill the map
|
|
while (currentEntry < mapEnd) {
|
|
|
|
// memory zone address
|
|
memoryMap.entry[i].addr = (void*)((ullong)currentEntry->addr_low +
|
|
(((ullong)currentEntry->addr_high) << 32 ));
|
|
// memory zone size in bytes
|
|
memoryMap.entry[i].length = (ulong)currentEntry->len_low +
|
|
(((ulong)currentEntry->len_high) << 32);
|
|
// memory availability
|
|
memoryMap.entry[i].type = (uint)currentEntry->type;
|
|
// Adding the size to the size (yup)
|
|
memoryMap.length++;
|
|
|
|
DebugLog("Zone: %lp type %d with length: %4luMB+%4luKB+%4luB\n",
|
|
memoryMap.entry[i].addr,
|
|
memoryMap.entry[i].type,
|
|
_ADDR_TO_MB(memoryMap.entry[i].length),
|
|
_ADDR_TO_KB(memoryMap.entry[i].length),
|
|
_ADDR_TO_B(memoryMap.entry[i].length)
|
|
);
|
|
|
|
// moving up !
|
|
currentEntry = (multiboot_memory_map_t*) ((ulong)currentEntry +
|
|
currentEntry->size + sizeof(currentEntry->size));
|
|
i++;
|
|
}
|
|
|
|
// compute the free ram size
|
|
for (i = 0; i < memoryMap.length; i++) {
|
|
if (memoryMap.entry[i].type == AVAILABLE_ZONE) {
|
|
memoryMap.freeRamSize += memoryMap.entry[i].length;
|
|
} else {
|
|
memoryMap.nonfreeRamSize += memoryMap.entry[i].length;
|
|
}
|
|
}
|
|
|
|
// Trully strange if it happens...
|
|
if (memoryMap.freeRamSize < MINIMUM_RAM_SIZE)
|
|
return ENOMEM;
|
|
|
|
DebugLog("Available RAM size : %u MB\n",
|
|
memoryMap.freeRamSize / MB);
|
|
|
|
return EOK;
|
|
}
|
|
|
|
size_t MmGetAvailZoneSize(void *start)
|
|
{
|
|
uint i;
|
|
|
|
// Because the kernel is the kernel
|
|
if (start < BtLoaderInfo.stackEndAddr + 16)
|
|
return 0;
|
|
|
|
// Search the zone where the start address is
|
|
for (i = 0; i < memoryMap.length; i++) {
|
|
// if the address is in an available zone, we can return the length
|
|
if (
|
|
memoryMap.entry[i].type == AVAILABLE_ZONE &&
|
|
(ulong)start >= (ulong)memoryMap.entry[i].addr &&
|
|
(ulong)start < ((ulong)memoryMap.entry[i].addr +
|
|
(ulong)memoryMap.entry[i].length)
|
|
) {
|
|
return (size_t)((ulong)memoryMap.entry[i].length - (ulong)start);
|
|
}
|
|
}
|
|
|
|
// If there is no zone, we return a 0 size
|
|
return 0;
|
|
}
|
|
|
|
bool MmIsBusyZone(void *start)
|
|
{
|
|
uint i;
|
|
|
|
// Because the kernel is the kernel
|
|
if (start < BtLoaderInfo.stackEndAddr + 16)
|
|
return 0;
|
|
|
|
// Search the zone where the start address is
|
|
for (i = 0; i < memoryMap.length; i++) {
|
|
// if the address is in an available zone, we can return the length
|
|
if (
|
|
memoryMap.entry[i].type != AVAILABLE_ZONE &&
|
|
(ulong)start >= (ulong)memoryMap.entry[i].addr &&
|
|
(ulong)start < ((ulong)memoryMap.entry[i].addr +
|
|
(ulong)memoryMap.entry[i].length)
|
|
) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
// The zone is free
|
|
return 0;
|
|
}
|
|
|
|
bool MmIsFailingZoneSize(void *start)
|
|
{
|
|
uint i;
|
|
|
|
// Because the kernel is the kernel
|
|
if (start < BtLoaderInfo.stackEndAddr + 16)
|
|
return 0;
|
|
|
|
// Search the zone where the start address is
|
|
for (i = 0; i < memoryMap.length; i++) {
|
|
// if the address is in a failing zone, we can return 1
|
|
if (
|
|
(memoryMap.entry[i].type == BADRAM_ZONE) &&
|
|
(ulong)start >= (ulong)memoryMap.entry[i].addr &&
|
|
(ulong)start < ((ulong)memoryMap.entry[i].addr +
|
|
(ulong)memoryMap.entry[i].length)
|
|
) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
// If there is no zone, we return a 0 size
|
|
return 0;
|
|
}
|
|
|
|
void *MmGetFirstAvailZone(void *start)
|
|
{
|
|
uint i;
|
|
void *current = 0;
|
|
|
|
// Because the kernel is the kernel
|
|
if ((ulong)start < (ulong)BtLoaderInfo.stackEndAddr+4096) {
|
|
return MmGetFirstAvailZone(BtLoaderInfo.stackEndAddr+4096);
|
|
}
|
|
|
|
// Search the zone where the start address is
|
|
for (i = 0; i < memoryMap.length; i++) {
|
|
// if the address is in an available zone, we can return the start address
|
|
if (
|
|
memoryMap.entry[i].type == AVAILABLE_ZONE &&
|
|
(ulong)start >= (ulong)memoryMap.entry[i].addr &&
|
|
(ulong)start < ((ulong)memoryMap.entry[i].addr +
|
|
(ulong)memoryMap.entry[i].length)
|
|
) {
|
|
current = start;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (current)
|
|
return current;
|
|
|
|
// Search the first zone from start
|
|
for (i = 0; i < memoryMap.length; i++) {
|
|
// Return the first zone that is after start
|
|
if (
|
|
memoryMap.entry[i].type == AVAILABLE_ZONE &&
|
|
(ulong)start <= (ulong)memoryMap.entry[i].addr
|
|
) {
|
|
current = memoryMap.entry[i].addr;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return current;
|
|
}
|
|
|
|
void MmPrintMemoryMap(void)
|
|
{
|
|
char avStr[15];
|
|
extern int shcol;
|
|
|
|
for (uint i=0; i < memoryMap.length; i++) {
|
|
|
|
switch (memoryMap.entry[i].type) {
|
|
case AVAILABLE_ZONE: snprintf(avStr, 15, "%CAvailable%C",
|
|
VGA_COLOR_GREEN,
|
|
shcol);
|
|
break;
|
|
case RESERVED_ZONE: snprintf(avStr, 15, "%CReserved %C",
|
|
VGA_COLOR_RED,
|
|
shcol);
|
|
break;
|
|
case ACPI_ZONE: snprintf(avStr, 15, "%CACPI %C",
|
|
VGA_COLOR_LIGHT_BROWN,
|
|
shcol);
|
|
break;
|
|
case NVS_ZONE: snprintf(avStr, 15, "%CNVS %C",
|
|
VGA_COLOR_LIGHT_BROWN,
|
|
shcol);
|
|
break;
|
|
case BADRAM_ZONE: snprintf(avStr, 15, "%CBAD RAM %C",
|
|
VGA_COLOR_LIGHT_RED,
|
|
shcol);
|
|
break;
|
|
default:;
|
|
}
|
|
|
|
ulong len = memoryMap.entry[i].length;
|
|
|
|
KernLog("%Cmem zone:%C %lp %s %Cwith length:%C %4lu%CMB"
|
|
"+%C%4lu%CKB+%C%4lu%CB\n",
|
|
|
|
VGA_COLOR_DARK_GREY,
|
|
shcol,
|
|
memoryMap.entry[i].addr, avStr,
|
|
VGA_COLOR_DARK_GREY,
|
|
shcol,
|
|
_ADDR_TO_MB(len),
|
|
VGA_COLOR_DARK_GREY,
|
|
shcol,
|
|
_ADDR_TO_KB(len),
|
|
VGA_COLOR_DARK_GREY,
|
|
shcol,
|
|
_ADDR_TO_B(len),
|
|
VGA_COLOR_DARK_GREY,
|
|
shcol
|
|
);
|
|
}
|
|
KernLog("\n");
|
|
}
|