Keras : classificateur gauss

This commit is contained in:
Philippe Roy 2023-06-28 08:11:54 +02:00
parent d3a407474e
commit 37e5fc2e58
3 changed files with 82 additions and 56 deletions

View File

@ -1,6 +1,8 @@
import os, time
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.colors import ListedColormap, LinearSegmentedColormap
import tensorflow as tf
from tensorflow import keras
@ -54,57 +56,87 @@ from tensorflow import keras
# Initialisation
###############################################################################
# Init de Tensorflow + Keras
# tf.__version__
# keras.__version__
# tf.config.list_physical_devices('GPU')
# Init du temps
t_debut = time.time()
# Init des plots
fig = plt.figure(layout="constrained", figsize=(15, 5))
fig.suptitle("Réseaux de neurones avec Keras - Classificateur d'images")
subfigs = fig.subfigures(1, 3)
model_ax = subfigs[0].subplots(1, 1)
apts_ax = subfigs[1].subplots(1, 1)
img_ax = subfigs[2].subplots(4, 8)
fig = plt.figure(figsize=(15, 5))
fig.suptitle("Réseaux de neurones avec Keras - Classificateur : points sur une Gaussienne")
model_ax = fig.add_subplot(131) # Modèle
apts_ax = fig.add_subplot(132) # Courbes d'apprentissage
donnees_ax = fig.add_subplot(133) # Observations : x1,x2 et cibles : y
###############################################################################
# Observations
###############################################################################
# Observations d'apprentissage, de validation et de test
vetement = keras.datasets.fashion_mnist # Jeu de données Fashion MNIST
(X, y), (X_test, y_test) = vetement.load_data()
X_train, y_train = X[5000:]/255.0 , y[5000:]
X_valid, y_valid = X[:5000]/255.0 , y[:5000]
classes = ["Tshirt", "Pantalon", "Pull", "Robe", "Manteau", "Sandale", "Chemise", "Basket", "Sac", "Bottine"]
# Observations d'apprentissage
m = 1000 # Nombre d'observations
bg = 1 # Quantité du bruit gaussien # FIXME : pas en place
rayon = 2.5 # Rayon de séparation
marge = 0.25
x1 = np.empty(m)
x2 = np.empty(m)
y = np.empty(m)
# Go !
j=0
for i in range (round(m/2)-1):
# Première gaussienne
xc1, yc1 = 2, 2
sigma1 = 0.5
x1[j] = np.random.normal(xc1, sigma1)
x2[j] = np.random.normal(xc1, sigma1)
y[j] = 1
j+=1
# Deuxième gaussienne
xc2, yc2 = -2, -2
sigma2 = 0.5
x1[j] = np.random.normal(xc2, sigma2)
x2[j] = np.random.normal(xc2, sigma2)
y[j] = 0
j+=1
# Split en observations d'entrainement et de validation
test_size=0.1 # Ratio du lot de test
m_train = int(np.round(m*(1-test_size)))
x1_train, x2_train, y_train = x1[:m_train], x2[:m_train], y[:m_train] # Jeu d'entrainement
x1_valid, x2_valid, y_valid = x1[m_train:], x2[m_train:], y[m_train:] # Jeu de validation
X_train = np.c_[x1_train, x2_train]
X_valid = np.c_[x1_valid, x2_valid]
# Plots
donnees_ax.plot(x1_train[y_train==1], x2_train[y_train==1], "o", markerfacecolor="tab:blue", markeredgecolor='white', markeredgewidth=0.75)
donnees_ax.plot(x1_train[y_train==0], x2_train[y_train==0], "o" , markerfacecolor="tab:orange", markeredgecolor='white', markeredgewidth=0.75)
donnees_ax.plot(x1_valid[y_valid==1], x2_valid[y_valid==1], "o", markerfacecolor='tab:blue', markeredgecolor='black')
donnees_ax.plot(x1_valid[y_valid==0], x2_valid[y_valid==0], "o", markerfacecolor='tab:orange', markeredgecolor='black')
# Nouvelles observations
m_new = 100 # Résolution par axes
x1_new=np.linspace(-6, 6, m_new).reshape(-1, 1)
x2_new=np.linspace(-6, 6, m_new).reshape(-1, 1)
x1_new_mg, x2_new_mg = np.meshgrid(x1_new, x2_new)
X_new = np.c_[x1_new_mg.ravel(), x2_new_mg.ravel()]
###############################################################################
# Phase d'apprentissage
###############################################################################
n = 30 # Nombre d'itérations (valeur par défaut : 30 , hyperparamètre)
n = 50 # Nombre d'itérations (valeur par défaut : 40 , hyperparamètre)
eta = 0.01 # Taux d'appentissage (valeur par défaut dans Keras : 0.01, hyperparamètre)
lot=32 # Taille de lot (valeur par défaut dans Keras: 32 , hyperparamètre)
perte="sparse_categorical_crossentropy" # Type de perte (hyperparamètre)
#perte="mse" # Type de perte (hyperparamètre)
# perte="sparse_categorical_crossentropy" # Type de perte (hyperparamètre)
perte="mse" # Type de perte (hyperparamètre)
# perte='mean_absolute_error'
keras.backend.clear_session()
# np.random.seed(42)
# tf.random.set_seed(42)
model = keras.models.Sequential() # Modèle de reseau de neurones
model.add(keras.layers.Flatten(input_shape=[28, 28])) # Couche d'entrée : mise à plat des données d'entrée -> 1 node / pixel soit 784 (28x28)
model.add(keras.layers.Dense(300, activation="relu")) # Couche 1 : 300 nodes
# model.add(keras.layers.Dense(300, activation="relu")) # Couche 2 : 300 nodes -> passage de 100 à 300
# model.add(keras.layers.Dense(300, activation="relu")) # Couche 3 : 300 nodes -> ajout
model.add(keras.layers.Dense(100, activation="relu")) # Couche 4 : 100 nodes -> ajout
model.add(keras.layers.Dense(10, activation="softmax")) # Couche de sortie : 1 node par classe soit 10
model.add(keras.layers.Dense(2, input_dim=2, activation="relu")) # Couche 1 : 2 nodes
model.add(keras.layers.Dense(1, activation="sigmoid")) # Couche de sortie : 1 node par classe
# model.compile(loss="sparse_categorical_crossentropy", optimizer="sgd", metrics=["accuracy"])
optimiseur=keras.optimizers.SGD(learning_rate= eta)
model.compile(loss=perte, optimizer=optimiseur, metrics=["accuracy"]) # Compilation du modèle
@ -114,20 +146,8 @@ apts = model.fit(X_train, y_train, epochs=n, batch_size=lot, validation_data=(X_
# Phase d'inférence
###############################################################################
# X_new=[]
# y_new=[]
# for i in range(8):
# idx = np.random.randint(X_test.shape[0]) # Index aléatoire
# X_new.append(X_test[idx:idx+1]/255.0)
# y_new.append(y_test[idx:idx+1])
idx = np.random.randint(X_test.shape[0]-32) # Index aléatoire
print ("\n")
print ("Test sur les images de "+ str(idx) + " à "+ str(idx+32) + " sur un jeu de 10 000 images.")
X_new = X_test[idx:idx+32]
y_new = np.argmax(model.predict(X_new), axis=-1)
y_new_test= y_test[idx:idx+32]
print ("\n")
y_predict=model.predict(X_new) # Prédiction
y_predict_map = y_predict.reshape(x1_new_mg.shape)
###############################################################################
# Résultats
@ -147,20 +167,21 @@ apts_ax.plot(apts.epoch, apts.history['loss'], 'b-', label="Perte - entrainement
apts_ax.plot(apts.epoch, apts.history['val_loss'], 'r-', label="Perte - validation")
apts_ax.plot(apts.epoch, apts.history['accuracy'], 'b:', label="Précision - entrainement")
apts_ax.plot(apts.epoch, apts.history['val_accuracy'], 'r:', label="Précision - validation")
apts_ax.set(ylim=(0, 1))
apts_ax.set(ylim=(-0.05, 1.05))
apts_ax.set_xlabel("Époque")
apts_ax.legend()
# Prédictions
for i in range (8):
for j in range (4):
img_ax[j][i].imshow(X_new[i*2+j], cmap="binary", interpolation="nearest")
img_ax[j][i].set_axis_off()
if y_new[i*2+j] == y_new_test[i*2+j]:
img_ax[j][i].set_title(classes[y_new[i*2+j]], fontsize=10)
else:
img_ax[j][i].set_title(classes[y_new[i*2+j]], fontsize=10, color="red")
# Plot des données
donnees_ax.set_title("Données")
new_colors = ["tab:orange", "white", "tab:blue"]
new_cmap = LinearSegmentedColormap.from_list("mycmap", new_colors) # FIXME : faire un dégradé
cc = donnees_ax.contourf(x1_new_mg, x2_new_mg, y_predict_map, cmap=new_cmap)
donnees_ax.set_xticks([-5,0,5])
donnees_ax.set_yticks([-5,0,5])
donnees_ax.set_xlabel(r'$x_1$')
donnees_ax.set_ylabel(r'$x_2$', rotation=0)
donnees_ax.set(xlim=(-5.25, 5.25), ylim=(-5.25, 5.25))
fig.colorbar(cc, ax=donnees_ax)
plt.show()
# Performances

View File

@ -16,4 +16,9 @@
![capture d'écran](img/04-keras-tf_playground-xor.png)
### Réseaux de neurones avec Keras - Classificateur : Points sur des gaussiennes
![capture d'écran](img/05-keras-tf_playground-gauss.png)

Binary file not shown.

After

Width:  |  Height:  |  Size: 453 KiB