mirror of
https://forge.apps.education.fr/phroy/mes-scripts-de-ml.git
synced 2024-01-27 11:30:36 +01:00
Keras : classificateur gauss
This commit is contained in:
parent
d3a407474e
commit
37e5fc2e58
@ -1,6 +1,8 @@
|
|||||||
import os, time
|
import os, time
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
from matplotlib import cm
|
||||||
|
from matplotlib.colors import ListedColormap, LinearSegmentedColormap
|
||||||
|
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
from tensorflow import keras
|
from tensorflow import keras
|
||||||
@ -54,57 +56,87 @@ from tensorflow import keras
|
|||||||
# Initialisation
|
# Initialisation
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
|
||||||
# Init de Tensorflow + Keras
|
|
||||||
|
|
||||||
# tf.__version__
|
|
||||||
# keras.__version__
|
|
||||||
# tf.config.list_physical_devices('GPU')
|
|
||||||
|
|
||||||
# Init du temps
|
# Init du temps
|
||||||
t_debut = time.time()
|
t_debut = time.time()
|
||||||
|
|
||||||
# Init des plots
|
# Init des plots
|
||||||
fig = plt.figure(layout="constrained", figsize=(15, 5))
|
fig = plt.figure(figsize=(15, 5))
|
||||||
fig.suptitle("Réseaux de neurones avec Keras - Classificateur d'images")
|
fig.suptitle("Réseaux de neurones avec Keras - Classificateur : points sur une Gaussienne")
|
||||||
subfigs = fig.subfigures(1, 3)
|
model_ax = fig.add_subplot(131) # Modèle
|
||||||
model_ax = subfigs[0].subplots(1, 1)
|
apts_ax = fig.add_subplot(132) # Courbes d'apprentissage
|
||||||
apts_ax = subfigs[1].subplots(1, 1)
|
donnees_ax = fig.add_subplot(133) # Observations : x1,x2 et cibles : y
|
||||||
img_ax = subfigs[2].subplots(4, 8)
|
|
||||||
|
|
||||||
###############################################################################
|
###############################################################################
|
||||||
# Observations
|
# Observations
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
|
||||||
# Observations d'apprentissage, de validation et de test
|
# Observations d'apprentissage
|
||||||
vetement = keras.datasets.fashion_mnist # Jeu de données Fashion MNIST
|
m = 1000 # Nombre d'observations
|
||||||
(X, y), (X_test, y_test) = vetement.load_data()
|
bg = 1 # Quantité du bruit gaussien # FIXME : pas en place
|
||||||
X_train, y_train = X[5000:]/255.0 , y[5000:]
|
rayon = 2.5 # Rayon de séparation
|
||||||
X_valid, y_valid = X[:5000]/255.0 , y[:5000]
|
marge = 0.25
|
||||||
classes = ["Tshirt", "Pantalon", "Pull", "Robe", "Manteau", "Sandale", "Chemise", "Basket", "Sac", "Bottine"]
|
x1 = np.empty(m)
|
||||||
|
x2 = np.empty(m)
|
||||||
|
y = np.empty(m)
|
||||||
|
|
||||||
|
# Go !
|
||||||
|
j=0
|
||||||
|
for i in range (round(m/2)-1):
|
||||||
|
|
||||||
|
# Première gaussienne
|
||||||
|
xc1, yc1 = 2, 2
|
||||||
|
sigma1 = 0.5
|
||||||
|
x1[j] = np.random.normal(xc1, sigma1)
|
||||||
|
x2[j] = np.random.normal(xc1, sigma1)
|
||||||
|
y[j] = 1
|
||||||
|
j+=1
|
||||||
|
|
||||||
|
# Deuxième gaussienne
|
||||||
|
xc2, yc2 = -2, -2
|
||||||
|
sigma2 = 0.5
|
||||||
|
x1[j] = np.random.normal(xc2, sigma2)
|
||||||
|
x2[j] = np.random.normal(xc2, sigma2)
|
||||||
|
y[j] = 0
|
||||||
|
j+=1
|
||||||
|
|
||||||
|
# Split en observations d'entrainement et de validation
|
||||||
|
test_size=0.1 # Ratio du lot de test
|
||||||
|
m_train = int(np.round(m*(1-test_size)))
|
||||||
|
x1_train, x2_train, y_train = x1[:m_train], x2[:m_train], y[:m_train] # Jeu d'entrainement
|
||||||
|
x1_valid, x2_valid, y_valid = x1[m_train:], x2[m_train:], y[m_train:] # Jeu de validation
|
||||||
|
X_train = np.c_[x1_train, x2_train]
|
||||||
|
X_valid = np.c_[x1_valid, x2_valid]
|
||||||
|
|
||||||
|
# Plots
|
||||||
|
donnees_ax.plot(x1_train[y_train==1], x2_train[y_train==1], "o", markerfacecolor="tab:blue", markeredgecolor='white', markeredgewidth=0.75)
|
||||||
|
donnees_ax.plot(x1_train[y_train==0], x2_train[y_train==0], "o" , markerfacecolor="tab:orange", markeredgecolor='white', markeredgewidth=0.75)
|
||||||
|
donnees_ax.plot(x1_valid[y_valid==1], x2_valid[y_valid==1], "o", markerfacecolor='tab:blue', markeredgecolor='black')
|
||||||
|
donnees_ax.plot(x1_valid[y_valid==0], x2_valid[y_valid==0], "o", markerfacecolor='tab:orange', markeredgecolor='black')
|
||||||
|
|
||||||
|
# Nouvelles observations
|
||||||
|
m_new = 100 # Résolution par axes
|
||||||
|
x1_new=np.linspace(-6, 6, m_new).reshape(-1, 1)
|
||||||
|
x2_new=np.linspace(-6, 6, m_new).reshape(-1, 1)
|
||||||
|
x1_new_mg, x2_new_mg = np.meshgrid(x1_new, x2_new)
|
||||||
|
X_new = np.c_[x1_new_mg.ravel(), x2_new_mg.ravel()]
|
||||||
|
|
||||||
###############################################################################
|
###############################################################################
|
||||||
# Phase d'apprentissage
|
# Phase d'apprentissage
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
|
||||||
n = 30 # Nombre d'itérations (valeur par défaut : 30 , hyperparamètre)
|
n = 50 # Nombre d'itérations (valeur par défaut : 40 , hyperparamètre)
|
||||||
eta = 0.01 # Taux d'appentissage (valeur par défaut dans Keras : 0.01, hyperparamètre)
|
eta = 0.01 # Taux d'appentissage (valeur par défaut dans Keras : 0.01, hyperparamètre)
|
||||||
lot=32 # Taille de lot (valeur par défaut dans Keras: 32 , hyperparamètre)
|
lot=32 # Taille de lot (valeur par défaut dans Keras: 32 , hyperparamètre)
|
||||||
perte="sparse_categorical_crossentropy" # Type de perte (hyperparamètre)
|
|
||||||
#perte="mse" # Type de perte (hyperparamètre)
|
# perte="sparse_categorical_crossentropy" # Type de perte (hyperparamètre)
|
||||||
|
perte="mse" # Type de perte (hyperparamètre)
|
||||||
|
# perte='mean_absolute_error'
|
||||||
|
|
||||||
keras.backend.clear_session()
|
keras.backend.clear_session()
|
||||||
# np.random.seed(42)
|
|
||||||
# tf.random.set_seed(42)
|
|
||||||
|
|
||||||
model = keras.models.Sequential() # Modèle de reseau de neurones
|
model = keras.models.Sequential() # Modèle de reseau de neurones
|
||||||
model.add(keras.layers.Flatten(input_shape=[28, 28])) # Couche d'entrée : mise à plat des données d'entrée -> 1 node / pixel soit 784 (28x28)
|
model.add(keras.layers.Dense(2, input_dim=2, activation="relu")) # Couche 1 : 2 nodes
|
||||||
model.add(keras.layers.Dense(300, activation="relu")) # Couche 1 : 300 nodes
|
model.add(keras.layers.Dense(1, activation="sigmoid")) # Couche de sortie : 1 node par classe
|
||||||
# model.add(keras.layers.Dense(300, activation="relu")) # Couche 2 : 300 nodes -> passage de 100 à 300
|
|
||||||
# model.add(keras.layers.Dense(300, activation="relu")) # Couche 3 : 300 nodes -> ajout
|
|
||||||
model.add(keras.layers.Dense(100, activation="relu")) # Couche 4 : 100 nodes -> ajout
|
|
||||||
model.add(keras.layers.Dense(10, activation="softmax")) # Couche de sortie : 1 node par classe soit 10
|
|
||||||
|
|
||||||
# model.compile(loss="sparse_categorical_crossentropy", optimizer="sgd", metrics=["accuracy"])
|
|
||||||
optimiseur=keras.optimizers.SGD(learning_rate= eta)
|
optimiseur=keras.optimizers.SGD(learning_rate= eta)
|
||||||
model.compile(loss=perte, optimizer=optimiseur, metrics=["accuracy"]) # Compilation du modèle
|
model.compile(loss=perte, optimizer=optimiseur, metrics=["accuracy"]) # Compilation du modèle
|
||||||
|
|
||||||
@ -114,20 +146,8 @@ apts = model.fit(X_train, y_train, epochs=n, batch_size=lot, validation_data=(X_
|
|||||||
# Phase d'inférence
|
# Phase d'inférence
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
|
||||||
# X_new=[]
|
y_predict=model.predict(X_new) # Prédiction
|
||||||
# y_new=[]
|
y_predict_map = y_predict.reshape(x1_new_mg.shape)
|
||||||
# for i in range(8):
|
|
||||||
# idx = np.random.randint(X_test.shape[0]) # Index aléatoire
|
|
||||||
# X_new.append(X_test[idx:idx+1]/255.0)
|
|
||||||
# y_new.append(y_test[idx:idx+1])
|
|
||||||
|
|
||||||
idx = np.random.randint(X_test.shape[0]-32) # Index aléatoire
|
|
||||||
print ("\n")
|
|
||||||
print ("Test sur les images de "+ str(idx) + " à "+ str(idx+32) + " sur un jeu de 10 000 images.")
|
|
||||||
X_new = X_test[idx:idx+32]
|
|
||||||
y_new = np.argmax(model.predict(X_new), axis=-1)
|
|
||||||
y_new_test= y_test[idx:idx+32]
|
|
||||||
print ("\n")
|
|
||||||
|
|
||||||
###############################################################################
|
###############################################################################
|
||||||
# Résultats
|
# Résultats
|
||||||
@ -147,20 +167,21 @@ apts_ax.plot(apts.epoch, apts.history['loss'], 'b-', label="Perte - entrainement
|
|||||||
apts_ax.plot(apts.epoch, apts.history['val_loss'], 'r-', label="Perte - validation")
|
apts_ax.plot(apts.epoch, apts.history['val_loss'], 'r-', label="Perte - validation")
|
||||||
apts_ax.plot(apts.epoch, apts.history['accuracy'], 'b:', label="Précision - entrainement")
|
apts_ax.plot(apts.epoch, apts.history['accuracy'], 'b:', label="Précision - entrainement")
|
||||||
apts_ax.plot(apts.epoch, apts.history['val_accuracy'], 'r:', label="Précision - validation")
|
apts_ax.plot(apts.epoch, apts.history['val_accuracy'], 'r:', label="Précision - validation")
|
||||||
apts_ax.set(ylim=(0, 1))
|
apts_ax.set(ylim=(-0.05, 1.05))
|
||||||
apts_ax.set_xlabel("Époque")
|
apts_ax.set_xlabel("Époque")
|
||||||
apts_ax.legend()
|
apts_ax.legend()
|
||||||
|
|
||||||
# Prédictions
|
# Plot des données
|
||||||
for i in range (8):
|
donnees_ax.set_title("Données")
|
||||||
for j in range (4):
|
new_colors = ["tab:orange", "white", "tab:blue"]
|
||||||
img_ax[j][i].imshow(X_new[i*2+j], cmap="binary", interpolation="nearest")
|
new_cmap = LinearSegmentedColormap.from_list("mycmap", new_colors) # FIXME : faire un dégradé
|
||||||
img_ax[j][i].set_axis_off()
|
cc = donnees_ax.contourf(x1_new_mg, x2_new_mg, y_predict_map, cmap=new_cmap)
|
||||||
if y_new[i*2+j] == y_new_test[i*2+j]:
|
donnees_ax.set_xticks([-5,0,5])
|
||||||
img_ax[j][i].set_title(classes[y_new[i*2+j]], fontsize=10)
|
donnees_ax.set_yticks([-5,0,5])
|
||||||
else:
|
donnees_ax.set_xlabel(r'$x_1$')
|
||||||
img_ax[j][i].set_title(classes[y_new[i*2+j]], fontsize=10, color="red")
|
donnees_ax.set_ylabel(r'$x_2$', rotation=0)
|
||||||
|
donnees_ax.set(xlim=(-5.25, 5.25), ylim=(-5.25, 5.25))
|
||||||
|
fig.colorbar(cc, ax=donnees_ax)
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
# Performances
|
# Performances
|
||||||
|
@ -16,4 +16,9 @@
|
|||||||
|
|
||||||
![capture d'écran](img/04-keras-tf_playground-xor.png)
|
![capture d'écran](img/04-keras-tf_playground-xor.png)
|
||||||
|
|
||||||
|
### Réseaux de neurones avec Keras - Classificateur : Points sur des gaussiennes
|
||||||
|
|
||||||
|
![capture d'écran](img/05-keras-tf_playground-gauss.png)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
BIN
02-intro_rna/img/05-keras-tf_playground-gauss.png
Normal file
BIN
02-intro_rna/img/05-keras-tf_playground-gauss.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 453 KiB |
Loading…
Reference in New Issue
Block a user