Go to file
2021-03-06 20:04:44 +01:00
data Add image dataset, batch convertion bash script, 2021-03-06 18:27:41 +01:00
models Added tflite model & tflite python script 2021-03-06 19:01:05 +01:00
src Add numpy 2021-03-06 20:04:44 +01:00
.gitignore Add image dataset, batch convertion bash script, 2021-03-06 18:27:41 +01:00
LICENSE Initial commit 2021-03-03 20:30:09 +01:00
README.md Add troubleshot 2021-03-06 20:02:09 +01:00

TensorBird

A project aiming to perform auto identification of bird species from pictures taken by PiCameraTrap using machine learning.

Inspiration

I have been inprired by following ressource :

Environmnent Set Up

Create and Activate virtual env

python -m venv tb-venv
source tb-venv/bin/activate

Install Tensorflow in container

docker pull tensorflow/tensorflow:latest  # Download latest stable image
docker run -it -p 8888:8888 tensorflow/tensorflow:latest-jupyter  # Start Jupyter server 

Install Tensorflow using pip

python -m pip install tensorflow

Launch Jupyter Notebook

Make the virtual env accessible from Jupyter Notebook

pip install ipykernel
python -m ipykernel install --user --name=tb-venv

Launch Jupyter

jupyter notebook

Run TF Lite

Trouble shooting

For tensorflow Lite to work on virtual env, we have to install the following package.

sudo apt install libatlas-base-dev