2021-02-28 11:14:02 +01:00
// 3dcam
// With huge help from @NicolasNoble : https://discord.com/channels/642647820683444236/646765703143227394/796876392670429204
/* PSX screen coordinate system
*
* Z +
* /
* /
* + - - - - - - X +
* / |
* / |
* / Y +
* eye */
// bpy. app. debug = True
# include <sys/types.h>
# include <libgte.h>
# include <libgpu.h>
# include <libetc.h>
# include <stdio.h>
# include <stdint.h>
2021-03-06 11:45:25 +01:00
# include <stddef.h>
2021-02-28 11:14:02 +01:00
// Precalculated sin/cos values
//~ #include "psin.c"
//~ #include "pcos.c"
# include "atan.c"
// Sample vector model
2021-03-06 11:45:25 +01:00
# include "coridor2.c"
2021-02-28 11:14:02 +01:00
//~ #include "tst-quads.c"
//~ #include "gnd.c"
//~ #include "startcube.c"
# define VMODE 0
# define SCREENXRES 320
# define SCREENYRES 240
# define CENTERX SCREENXRES / 2
# define CENTERY SCREENYRES / 2
// pixel > cm : used in physics calculations
# define SCALE 4
# define FNT_POS_X 960
# define FNT_POS_Y 0
2021-03-06 11:45:25 +01:00
# define OT2LEN 8
2021-02-28 11:14:02 +01:00
# define OTLEN 256 // Maximum number of OT entries
# define PRIMBUFFLEN 1024 * sizeof(POLY_GT4) // Maximum number of POLY_GT3 primitives
// atantable
# define SWAP(a,b,c) {(c)=(a); (a)=(b); (b)=(c);} // swap(x, y, buffer)
// dotproduct of two vectors
# define dotProduct(v0, v1) \
( v0 ) . vx * ( v1 ) . vx + \
( v0 ) . vy * ( v1 ) . vy + \
( v0 ) . vz * ( v1 ) . vz
// min value
# define min(a,b) \
( a ) - ( b ) > 0 ? ( b ) : ( a )
// max
# define max(a,b) \
( a ) - ( b ) > 0 ? ( a ) : ( b )
# define subVector(v0, v1) \
( v0 ) . vx - ( v1 ) . vx , \
( v0 ) . vy - ( v1 ) . vy , \
( v0 ) . vz - ( v1 ) . vz
//~ extern ushort rcossin_tbl[];
// Display and draw environments, double buffered
DISPENV disp [ 2 ] ;
DRAWENV draw [ 2 ] ;
2021-03-06 11:45:25 +01:00
// OT for BG/FG discrimination
u_long otdisc [ 2 ] [ OT2LEN ] = { 0 } ;
// Main OT
2021-02-28 11:14:02 +01:00
u_long ot [ 2 ] [ OTLEN ] = { 0 } ; // Ordering table (contains addresses to primitives)
2021-03-06 11:45:25 +01:00
2021-02-28 11:14:02 +01:00
char primbuff [ 2 ] [ PRIMBUFFLEN ] = { 0 } ; // Primitive list // That's our prim buffer
//~ int primcnt=0; // Primitive counter
char * nextpri = primbuff [ 0 ] ; // Primitive counter
char db = 0 ; // Current buffer counter
CVECTOR BGc = { 50 , 50 , 75 , 0 } ; // Far color
VECTOR BKc = { 100 , 100 , 100 , 0 } ; // Back color
// Local color matrix
//~ static MATRIX cmat = {
//~ /* light source #0, #1, #2, */
//~ ONE, 0, 0, /* R */
//~ 0, ONE, 0, /* G */
//~ 0, 0, ONE, /* B */
//~ };
//~ // local light matrix : Direction and reach of each light source.
//~ // Each light is aligned with the axis, hence direction is in the same coordinate system as the PSX (Y-axis down)
//~ // One == 4096 is reach/intensity of light source
//~ static MATRIX lgtmat = {
//~ // X Y Z
//~ ONE, 0, 0, // Light 0
//~ 0,0,0, // Light 1
//~ 0,0,0 // Light 2
//~ };
// Light
//~ MATRIX rottrans;
MATRIX rotlgt ;
SVECTOR lgtang = { 0 , 0 , 0 } ;
MATRIX light ;
//~ SVECTOR lgtang = {1024, -512, 1024};
static int m_cosTable [ 512 ] ; // precalc costable
static const unsigned int DC_2PI = 2048 ; // this is from gere : https://github.com/grumpycoders/Balau/blob/master/tests/test-Handles.cc#L20-L102
static const unsigned int DC_PI = 1024 ;
static const unsigned int DC_PI2 = 512 ;
short vs ;
typedef struct {
int x , xv ; // x: current value += xv : new value
int y , yv ; // x,y,z, vx, vy, vz are in PSX units (ONE == 4096)
int z , zv ;
int pan , panv ;
int tilt , tiltv ;
int rol ;
VECTOR pos ;
SVECTOR rot ;
SVECTOR dvs ;
MATRIX mat ;
} CAMERA ;
CAMERA camera = {
0 , 0 ,
0 , 0 ,
0 , 0 ,
0 , 0 ,
0 , 0 ,
0 ,
{ 0 , 0 , 0 } ,
{ 0 , 0 , 0 } ,
{ 0 , 0 , 0 }
} ;
// physics
long time = 0 ;
const int gravity = 10 ;
//~ //vertex anim
//~ typedef struct {
//~ int nframes; // number of frames e.g 20
//~ int nvert; // number of vertices e.g 21
//~ SVECTOR data[]; // vertex pos as SVECTORs e.g 20 * 21 SVECTORS
//~ } VANIM;
//Pad
int pressed = 0 ;
u_short timer = 0 ;
// Cam stuff
int camMode = 2 ;
long timeB = 0 ;
int lerping = 0 ;
u_long triCount = 0 ;
// Prototypes
// Stolen from grumpycoder
// Sin/Cos Table
void generateTable ( void ) ;
int ncos ( u_int t ) ;
int nsin ( u_int t ) ;
// Atan table
int patan ( int x , int y ) ;
//sqrt
u_int psqrt ( u_int n ) ;
//~ typedef unsigned int uint32_t;
//~ typedef int int32_t;
// fixed point math
static inline int32_t dMul ( int32_t a , int32_t b ) ;
static inline uint32_t lerpU ( uint32_t start , uint32_t dest , unsigned pos ) ;
static inline int32_t lerpS ( int32_t start , int32_t dest , unsigned pos ) ;
static inline int32_t lerpD ( int32_t start , int32_t dest , int32_t pos ) ;
static inline long long lerpL ( long long start , long long dest , long long pos ) ;
// PSX setup
void init ( void ) ;
void display ( void ) ;
// Utils
void LoadTexture ( u_long * tim , TIM_IMAGE * tparam ) ;
int cliptest3 ( short * v1 ) ;
int lerp ( int start , int end , int factor ) ; // FIXME : not working as it should
SVECTOR SVlerp ( SVECTOR start , SVECTOR end , int factor ) ; // FIXME
// Camera
void getCameraXZ ( int * x , int * z , int actorX , int actorZ , int angle , int distance ) ;
void applyCamera ( CAMERA * cam ) ;
void setCameraPos ( VECTOR pos , SVECTOR rot ) ;
// Physics
VECTOR getIntCollision ( BODY one , BODY two ) ;
VECTOR getExtCollision ( BODY one , BODY two ) ;
void ResolveCollision ( BODY * one , BODY * two ) ;
VECTOR angularMom ( BODY body ) ; // Not yours ;)
void applyAcceleration ( BODY * actor ) ;
void callback ( ) ;
int main ( ) {
// Mesh stuff
int i ;
long t , p , OTz , OTc , Flag , nclip ; // t == vertex count, p == depth cueing interpolation value, OTz == value to create Z-ordered OT, Flag == see LibOver47.pdf, p.143
POLY_GT3 * poly ;
POLY_GT4 * poly4 ;
SPRT * sprt ;
DR_TPAGE * tpage ;
// Poly subdiv
2021-03-06 11:45:25 +01:00
DIVPOLYGON4 div = { 0 } ;
div . pih = SCREENXRES ;
div . piv = SCREENYRES ;
div . ndiv = 1 ;
2021-02-28 11:14:02 +01:00
MATRIX Cmatrix = { 0 } ;
init ( ) ;
generateTable ( ) ;
VSyncCallback ( callback ) ;
//~ SetLightMatrix(&LLM);
SetColorMatrix ( & cmat ) ;
SetBackColor ( BKc . vx , BKc . vy , BKc . vz ) ;
//~ SetFarColor(BGc.r, BGc.g, BGc.b);
SetFogNearFar ( 1200 , 1600 , SCREENXRES ) ;
for ( int k = 0 ; k < sizeof ( meshes ) / sizeof ( TMESH * ) ; k + + ) {
LoadTexture ( meshes [ k ] - > tim_data , meshes [ k ] - > tim ) ;
}
2021-03-06 11:45:25 +01:00
//~ camPtr = &camAngle_camPath_001;
if ( camPtr - > tim_data ) {
LoadTexture ( camPtr - > tim_data , camPtr - > BGtim ) ;
}
2021-02-28 11:14:02 +01:00
// physics
short physics = 1 ;
long dt ;
VECTOR col_lvl , col_sphere , col_sphere_act = { 0 } ;
// Cam stuff
VECTOR posToActor = { 0 , 0 , 0 , 0 } ; // position of camera relative to actor
VECTOR theta = { 0 , 0 , 0 , 0 } ; // rotation angles for the camera to point at actor
int angle = 0 ; //PSX units = 4096 == 360° = 2Pi
int dist = 0 ; //PSX units
short timediv = 1 ;
int atime = 0 ;
for ( int k = 0 ; k < sizeof ( meshes ) / sizeof ( meshes [ 0 ] ) ; k + + ) {
triCount + = meshes [ k ] - > tmesh - > len ;
}
2021-03-06 11:45:25 +01:00
// Pre-calc bg test
setCameraPos ( camPtr - > campos - > pos , camPtr - > campos - > rot ) ;
2021-02-28 11:14:02 +01:00
//~ camera.rot.vz = 100;
// Main loop
while ( 1 ) {
2021-03-06 11:45:25 +01:00
// Clear the main OT
ClearOTagR ( otdisc [ db ] , OT2LEN ) ;
// Clear Secondary OT
ClearOTagR ( ot [ db ] , OTLEN ) ;
2021-02-28 11:14:02 +01:00
// timeB = time;
time + + ;
// atime is used for animations timing
timediv = 1 ;
if ( time % timediv = = 0 ) {
atime + + ;
}
// Angle between camera and actor
// using atantable (faster)
theta . vy = patan ( posToActor . vx , posToActor . vz ) / 16 - 1024 ;
theta . vx = patan ( dist , posToActor . vy ) / 16 ;
if ( camMode ! = 2 ) {
camera . rot . vy = theta . vy ;
// using csin/ccos, no need for theta
//~ camera.rot.vy = angle;
camera . rot . vx = theta . vx ;
}
if ( camMode < 4 ) {
lerping = 0 ;
}
// Camera follows actor with lerp for rotations
if ( camMode = = 0 ) {
dist = 150 ;
camera . pos . vx = - ( camera . x / ONE ) ;
//~ camera.pos.vy = -(camera.y/ONE);
camera . pos . vz = - ( camera . z / ONE ) ;
getCameraXZ ( & camera . x , & camera . z , actorPtr - > pos - > vx , actorPtr - > pos - > vz , angle , dist ) ;
// FIXME! camera lerping to pos
//~ angle += lerp(camera.rot.vy, -actorPtr->rot->vy, 128);
//~ angle = lerpD(camera.rot.vy << 12, actorPtr->rot->vy << 12, 1024 << 12) >> 12;
angle = - actorPtr - > rot - > vy ;
}
// Camera rotates continuously around actor
if ( camMode = = 1 ) {
dist = 150 ;
camera . pos . vx = - ( camera . x / ONE ) ;
//~ camera.pos.vy = -(camera.y/ONE);
camera . pos . vz = - ( camera . z / ONE ) ;
getCameraXZ ( & camera . x , & camera . z , actorPtr - > pos - > vx , actorPtr - > pos - > vz , angle , dist ) ;
angle + = 10 ;
}
// Fixed Camera with actor tracking
if ( camMode = = 3 ) {
// Using libgte sqrt ( slower)
//~ dist = SquareRoot0( (posToActor.vx * posToActor.vx ) + (posToActor.vz * posToActor.vz) );
// Using precalc sqrt
dist = psqrt ( ( posToActor . vx * posToActor . vx ) + ( posToActor . vz * posToActor . vz ) ) ;
camera . pos . vx = 190 ;
camera . pos . vz = 100 ;
camera . pos . vy = 180 ;
}
// Fixed Camera angle
if ( camMode = = 2 ) {
2021-03-06 11:45:25 +01:00
// Load BG image in two SPRT since max width == 256
if ( camPtr - > tim_data ) {
// left part
sprt = ( SPRT * ) nextpri ;
setSprt ( sprt ) ;
setRGB0 ( sprt , 128 , 128 , 128 ) ;
setXY0 ( sprt , 0 , 0 ) ;
setWH ( sprt , 256 , 240 ) ;
setUV0 ( sprt , 0 , 0 ) ;
setClut ( sprt , camPtr - > BGtim - > crect - > x , camPtr - > BGtim - > crect - > y ) ;
addPrim ( & otdisc [ db ] [ OT2LEN - 1 ] , sprt ) ;
nextpri + = sizeof ( SPRT ) ;
tpage = ( DR_TPAGE * ) nextpri ;
setDrawTPage ( tpage , 0 , 1 ,
getTPage ( camPtr - > BGtim - > mode & 0x3 , 0 ,
camPtr - > BGtim - > prect - > x , camPtr - > BGtim - > prect - > y ) ) ;
addPrim ( & otdisc [ db ] [ OT2LEN - 1 ] , tpage ) ;
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
nextpri + = sizeof ( DR_TPAGE ) ;
// right part
sprt = ( SPRT * ) nextpri ;
setSprt ( sprt ) ;
setRGB0 ( sprt , 128 , 128 , 128 ) ;
setXY0 ( sprt , 320 - ( 320 - 256 ) , 0 ) ;
setWH ( sprt , 320 - 256 , 240 ) ;
setUV0 ( sprt , 0 , 0 ) ;
setClut ( sprt , camPtr - > BGtim - > crect - > x , camPtr - > BGtim - > crect - > y ) ;
addPrim ( & otdisc [ db ] [ OT2LEN - 1 ] , sprt ) ;
nextpri + = sizeof ( SPRT ) ;
tpage = ( DR_TPAGE * ) nextpri ;
setDrawTPage ( tpage , 0 , 1 ,
getTPage ( camPtr - > BGtim - > mode & 0x3 , 0 ,
camPtr - > BGtim - > prect - > x + 128 , camPtr - > BGtim - > prect - > y ) ) ;
addPrim ( & otdisc [ db ] [ OT2LEN - 1 ] , tpage ) ;
nextpri + = sizeof ( DR_TPAGE ) ;
}
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
setCameraPos ( camPtr - > campos - > pos , camPtr - > campos - > rot ) ;
2021-02-28 11:14:02 +01:00
}
// Flyby mode with LERP from camStart to camEnd
if ( camMode = = 4 ) {
// If key pos exist for camera
if ( camPath . len ) {
// Lerping sequence has not begun
if ( ! lerping ) {
// Set cam start position ( first key pos )
camera . pos . vx = camPath . points [ camPath . cursor ] . vx ;
camera . pos . vy = camPath . points [ camPath . cursor ] . vy ;
camera . pos . vz = camPath . points [ camPath . cursor ] . vz ;
// Lerping sequence is starting
lerping = 1 ;
// Set cam pos index to 0
camPath . pos = 0 ;
}
// Pre calculated sqrt ( see psqrt() )
dist = psqrt ( ( posToActor . vx * posToActor . vx ) + ( posToActor . vz * posToActor . vz ) ) ;
// Fixed point precision 2^12 == 4096
int precision = 12 ;
camera . pos . vx = lerpD ( camPath . points [ camPath . cursor ] . vx < < precision , camPath . points [ camPath . cursor + 1 ] . vx < < precision , camPath . pos < < precision ) > > precision ;
camera . pos . vy = lerpD ( camPath . points [ camPath . cursor ] . vy < < precision , camPath . points [ camPath . cursor + 1 ] . vy < < precision , camPath . pos < < precision ) > > precision ;
camera . pos . vz = lerpD ( camPath . points [ camPath . cursor ] . vz < < precision , camPath . points [ camPath . cursor + 1 ] . vz < < precision , camPath . pos < < precision ) > > precision ;
//~ FntPrint("Cam %d, %d\n", (int32_t)camPath.points[camPath.cursor].vx, camPath.points[camPath.cursor+1].vx);
2021-03-06 11:45:25 +01:00
//~ FntPrint("Cam %d, %d, %d\n", camera.pos.vx, camera.pos.vy, camera.pos.vz);
//~ FntPrint("Theta y: %d x: %d\n", theta.vy, theta.vx);
//~ FntPrint("Pos: %d Cur: %d\nTheta y: %d x: %d\n", camPath.pos, camPath.cursor, theta.vy, theta.vx);
2021-02-28 11:14:02 +01:00
// Linearly increment the lerp factor
camPath . pos + = 20 ;
// If camera has reached next key pos, reset pos index, move cursor to next key pos
if ( camPath . pos > ( 1 < < precision ) ) {
camPath . pos = 0 ;
camPath . cursor + + ;
}
// Last key pos is reached, reset cursor to first key pos, lerping sequence is over
if ( camPath . cursor = = camPath . len - 1 ) {
lerping = 0 ;
camPath . cursor = 0 ;
}
} else {
// if no key pos exists, switch to next camMode
camMode + + ; }
}
// Camera "on a rail" - cam is tracking actor, and moving with constraints on all axis
if ( camMode = = 5 ) {
// track actor. If theta (actor/cam rotation angle) is above or below an arbitrary angle,
// move cam so that the angle doesn't increase/decrease anymore.
if ( camPath . len ) {
// Lerping sequence has not begun
if ( ! lerping ) {
// Set cam start position ( first key pos )
camera . pos . vx = camPath . points [ camPath . cursor ] . vx ;
camera . pos . vy = camPath . points [ camPath . cursor ] . vy ;
camera . pos . vz = camPath . points [ camPath . cursor ] . vz ;
// Lerping sequence is starting
lerping = 1 ;
// Set cam pos index to 0
camPath . pos = 0 ;
}
// Pre calculated sqrt ( see psqrt() )
dist = psqrt ( ( posToActor . vx * posToActor . vx ) + ( posToActor . vz * posToActor . vz ) ) ;
// Fixed point precision 2^12 == 4096
short precision = 12 ;
camera . pos . vx = lerpD ( camPath . points [ camPath . cursor ] . vx < < precision , camPath . points [ camPath . cursor + 1 ] . vx < < precision , camPath . pos < < precision ) > > precision ;
camera . pos . vy = lerpD ( camPath . points [ camPath . cursor ] . vy < < precision , camPath . points [ camPath . cursor + 1 ] . vy < < precision , camPath . pos < < precision ) > > precision ;
camera . pos . vz = lerpD ( camPath . points [ camPath . cursor ] . vz < < precision , camPath . points [ camPath . cursor + 1 ] . vz < < precision , camPath . pos < < precision ) > > precision ;
//~ FntPrint("Cam %d, %d\n", (int32_t)camPath.points[camPath.cursor].vx, camPath.points[camPath.cursor+1].vx);
//~ FntPrint("Cam %d, %d, %d\n", camera.pos.vx, camera.pos.vy, camera.pos.vz);
//~ FntPrint("Pos: %d Cur: %d\nTheta y: %d x: %d\n", camPath.pos, camPath.cursor, theta.vy, theta.vx);
if ( theta . vy < - 50 ) {
2021-03-06 11:45:25 +01:00
camPath . pos + = 40 ;
2021-02-28 11:14:02 +01:00
}
if ( theta . vy > 50 ) {
2021-03-06 11:45:25 +01:00
camPath . pos - = 40 ;
2021-02-28 11:14:02 +01:00
}
// If camera has reached next key pos, reset pos index, move cursor to next key pos
if ( camPath . pos > ( 1 < < precision ) ) {
camPath . pos = 0 ;
camPath . cursor + + ;
//~ camPath.dir = 1;
}
if ( camPath . pos < - 100 ) {
camPath . pos = 1 < < precision ;
camPath . cursor - - ;
//~ camPath.dir *= -1;
}
// Last key pos is reached, reset cursor to first key pos, lerping sequence is over
if ( camPath . cursor = = camPath . len - 1 | | camPath . cursor < 0 ) {
lerping = 0 ;
camPath . cursor = 0 ;
}
} else {
// if no key pos exists, switch to next camMode
camMode + + ; }
}
//~ dt = time/180+1 - time/180;
// Physics
if ( physics ) {
if ( time % 1 = = 0 ) {
for ( int k = 0 ; k < sizeof ( meshes ) / sizeof ( meshes [ 0 ] ) ; k + + ) {
if ( * meshes [ k ] - > isRigidBody = = 1 ) {
applyAcceleration ( meshes [ k ] - > body ) ;
// Get col with level ( modelgnd_body )
//~ col_lvl = getIntCollision( *meshes[k]->body , *levelPtr->body );
col_lvl = getIntCollision ( * actorPtr - > body , * levelPtr - > body ) ;
// &modelobject_body, &modelSphere_body
col_sphere = getIntCollision ( * propPtr - > body , * levelPtr - > body ) ;
col_sphere_act = getExtCollision ( * actorPtr - > body , * propPtr - > body ) ;
//~ ResolveCollision( actorPtr->body, propPtr->body);
// If !col, keep moving
if ( ! col_lvl . vx ) { meshes [ k ] - > pos - > vx = meshes [ k ] - > body - > position . vx ; }
if ( ! col_lvl . vy ) { meshes [ k ] - > pos - > vy = meshes [ k ] - > body - > position . vy ; } ; //meshes[k]->body->gForce.vy = 0;} // FIXME : Why the 15px offset ?
if ( ! col_lvl . vz ) { meshes [ k ] - > pos - > vz = meshes [ k ] - > body - > position . vz ; }
// If no col with ground, fall off
if ( col_lvl . vy ) {
if ( ! col_lvl . vx & & ! col_lvl . vz ) { actorPtr - > body - > position . vy = actorPtr - > body - > min . vy ; }
}
if ( col_sphere . vy ) {
if ( ! col_sphere . vx & & ! col_sphere . vz ) { propPtr - > body - > position . vy = propPtr - > body - > min . vy ; }
}
//~ if ( col_lvl.vz ) { meshes[k]->body->gForce.vz *= -1; }
//~ FntPrint("Vel: %d\n", modelSphere_body.velocity.vx);
//~ FntPrint("Obj: %d,%d,%d\n",modelobject_body.velocity.vx,modelobject_body.velocity.vy,modelobject_body.velocity.vz);
//~ FntPrint("Sph: %d,%d,%d\n",modelSphere_body.velocity.vx,modelSphere_body.velocity.vy,modelSphere_body.velocity.vz);
//
if ( col_sphere_act . vx & & col_sphere_act . vz ) {
propPtr - > body - > velocity . vx + = actorPtr - > body - > velocity . vx ; // * ONE / propPtr->body->restitution ;
propPtr - > body - > velocity . vz + = actorPtr - > body - > velocity . vz ; // * ONE / propPtr->body->restitution ;
if ( propPtr - > body - > velocity . vx ) {
VECTOR L = angularMom ( * propPtr - > body ) ;
propPtr - > rot - > vz + = L . vx ;
}
if ( propPtr - > body - > velocity . vz ) {
VECTOR L = angularMom ( * propPtr - > body ) ;
propPtr - > rot - > vx - = L . vz ;
}
}
if ( ! col_sphere_act . vx ) {
propPtr - > body - > velocity . vx = 0 ;
}
if ( actorPtr - > body - > velocity . vx ) {
VECTOR L = angularMom ( * actorPtr - > body ) ;
actorPtr - > rot - > vz + = L . vx * nsin ( actorPtr - > rot - > vy ) * nsin ( actorPtr - > rot - > vy ) > > 24 ;
}
if ( actorPtr - > body - > velocity . vz ) {
VECTOR L = angularMom ( * actorPtr - > body ) ;
actorPtr - > rot - > vx - = L . vz * ncos ( actorPtr - > rot - > vy ) * ncos ( actorPtr - > rot - > vy ) > > 24 ;
}
//~ if ( actorPtr->body->velocity.vy){
//~ }
//~ if ( col_sphere.vz ) { meshes[k]->body->gForce.vz *= -1; }
//~ if ( col_sphere.vy ) { meshes[k]->body->gForce.vy *= -1; }
//~ if (modelSphere_body.gForce.vx){modelSphere_body.gForce.vx -= 5;}
meshes [ k ] - > pos - > vx = meshes [ k ] - > body - > position . vx ;
meshes [ k ] - > pos - > vy = meshes [ k ] - > body - > position . vy ;
meshes [ k ] - > pos - > vz = meshes [ k ] - > body - > position . vz ;
}
meshes [ k ] - > body - > velocity . vy = meshes [ k ] - > body - > velocity . vx = meshes [ k ] - > body - > velocity . vz = 0 ;
}
}
}
//*/
// Camera setup
// position of cam relative to actor
posToActor . vx = actorPtr - > pos - > vx + camera . pos . vx ;
posToActor . vz = actorPtr - > pos - > vz + camera . pos . vz ;
posToActor . vy = actorPtr - > pos - > vy + camera . pos . vy ;
// Clear the current OT
// ClearOTagR(ot[db], OTLEN);
// Polygon drawing
for ( int k = 0 ; k < sizeof ( meshes ) / sizeof ( meshes [ 0 ] ) ; k + + ) {
// loop on each mesh
t = 0 ;
// If rigidbdy, apply rot/transform matrix
if ( * meshes [ k ] - > isRigidBody | * meshes [ k ] - > isStaticBody ) {
//~ PushMatrix(); // Push current matrix on the stack (real slow -> dma transfer )
RotMatrix_gte ( meshes [ k ] - > rot , meshes [ k ] - > mat ) ; // Apply rotation matrix
TransMatrix ( meshes [ k ] - > mat , meshes [ k ] - > pos ) ;
// Apply translation matrix
CompMatrix ( & camera . mat , meshes [ k ] - > mat , meshes [ k ] - > mat ) ; // Was using &PolyMatrix instead of meshes[k]->mat
SetRotMatrix ( meshes [ k ] - > mat ) ; // Set default rotation matrix - Was using &PolyMatrix instead of meshes[k]->mat
SetTransMatrix ( meshes [ k ] - > mat ) ; // Was using &PolyMatrix instead of meshes[k]->mat
}
// mesh is POLY_GT3 ( triangle )
if ( meshes [ k ] - > index [ t ] . code = = 4 ) {
//~ t=0;
// modelCube is a TMESH, len member == # vertices, but here it's # of triangle... So, for each tri * 3 vertices ...
for ( i = 0 ; i < ( meshes [ k ] - > tmesh - > len * 3 ) ; i + = 3 ) {
2021-03-06 11:45:25 +01:00
// if mesh is not part of BG, draw them, else, discard
//~ if (!*meshes[k]->isBG) {
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
poly = ( POLY_GT3 * ) nextpri ;
// Vertex Anim
if ( * meshes [ k ] - > isAnim ) {
// with interpolation
if ( meshes [ k ] - > anim - > interpolate ) {
// ping pong
//~ if (meshes[k]->anim->cursor > 4096 || meshes[k]->anim->cursor < 0){
//~ meshes[k]->anim->dir *= -1;
//~ }
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
short precision = 12 ;
//~ // next keyframe
if ( meshes [ k ] - > anim - > cursor > ( 1 < < precision ) ) {
if ( meshes [ k ] - > anim - > lerpCursor < meshes [ k ] - > anim - > nframes - 1 ) {
meshes [ k ] - > anim - > lerpCursor + + ;
meshes [ k ] - > anim - > cursor = 0 ;
}
if ( meshes [ k ] - > anim - > lerpCursor = = meshes [ k ] - > anim - > nframes - 1 ) {
//~ else {
meshes [ k ] - > anim - > lerpCursor = 0 ;
meshes [ k ] - > anim - > cursor = 0 ;
}
}
//~ FntPrint("%d %d %d\n",meshes[k]->anim->lerpCursor, meshes[k]->anim->nframes, meshes[k]->anim->cursor );
// overflows somewhere ?
//~ for (int v = 0; v <= 1; v++){
//~ meshes[k]->tmesh->v[* &meshes[k]->index[t].order.vx + v].vx = lerpD( meshes[k]->anim->data[0 * meshes[k]->anim->nvert + * &meshes[k]->index[t].order.vx + v].vx << 12 , meshes[k]->anim->data[10 * meshes[k]->anim->nvert + * &meshes[k]->index[t].order.vx + v].vx << 12, meshes[k]->anim->cursor << 12) >> 12;
//~ meshes[k]->tmesh->v[* &meshes[k]->index[t].order.vx + v].vz = lerpD( meshes[k]->anim->data[0 * meshes[k]->anim->nvert + * &meshes[k]->index[t].order.vx + v].vz << 12 , meshes[k]->anim->data[10 * meshes[k]->anim->nvert + * &meshes[k]->index[t].order.vx + v].vz << 12, meshes[k]->anim->cursor << 12) >> 12;
//~ meshes[k]->tmesh->v[* &meshes[k]->index[t].order.vx + v].vy = lerpD( meshes[k]->anim->data[0 * meshes[k]->anim->nvert + * &meshes[k]->index[t].order.vx + v].vy << 12 , meshes[k]->anim->data[10 * meshes[k]->anim->nvert + * &meshes[k]->index[t].order.vx + v].vy << 12, meshes[k]->anim->cursor << 12) >> 12;
//~ }
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
// Let's lerp between keyframes
meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vx ] . vx = lerpD ( meshes [ k ] - > anim - > data [ meshes [ k ] - > anim - > lerpCursor * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vx ] . vx < < precision , meshes [ k ] - > anim - > data [ ( meshes [ k ] - > anim - > lerpCursor + 1 ) * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vx ] . vx < < precision , meshes [ k ] - > anim - > cursor < < precision ) > > precision ;
meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vx ] . vz = lerpD ( meshes [ k ] - > anim - > data [ meshes [ k ] - > anim - > lerpCursor * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vx ] . vz < < precision , meshes [ k ] - > anim - > data [ ( meshes [ k ] - > anim - > lerpCursor + 1 ) * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vx ] . vz < < precision , meshes [ k ] - > anim - > cursor < < precision ) > > precision ;
meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vx ] . vy = lerpD ( meshes [ k ] - > anim - > data [ meshes [ k ] - > anim - > lerpCursor * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vx ] . vy < < precision , meshes [ k ] - > anim - > data [ ( meshes [ k ] - > anim - > lerpCursor + 1 ) * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vx ] . vy < < precision , meshes [ k ] - > anim - > cursor < < precision ) > > precision ;
meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vz ] . vx = lerpD ( meshes [ k ] - > anim - > data [ meshes [ k ] - > anim - > lerpCursor * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vz ] . vx < < precision , meshes [ k ] - > anim - > data [ ( meshes [ k ] - > anim - > lerpCursor + 1 ) * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vz ] . vx < < precision , meshes [ k ] - > anim - > cursor < < precision ) > > precision ;
meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vz ] . vz = lerpD ( meshes [ k ] - > anim - > data [ meshes [ k ] - > anim - > lerpCursor * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vz ] . vz < < precision , meshes [ k ] - > anim - > data [ ( meshes [ k ] - > anim - > lerpCursor + 1 ) * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vz ] . vz < < precision , meshes [ k ] - > anim - > cursor < < precision ) > > precision ;
meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vz ] . vy = lerpD ( meshes [ k ] - > anim - > data [ meshes [ k ] - > anim - > lerpCursor * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vz ] . vy < < precision , meshes [ k ] - > anim - > data [ ( meshes [ k ] - > anim - > lerpCursor + 1 ) * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vz ] . vy < < precision , meshes [ k ] - > anim - > cursor < < precision ) > > precision ;
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vy ] . vx = lerpD ( meshes [ k ] - > anim - > data [ meshes [ k ] - > anim - > lerpCursor * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vy ] . vx < < precision , meshes [ k ] - > anim - > data [ ( meshes [ k ] - > anim - > lerpCursor + 1 ) * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vy ] . vx < < precision , meshes [ k ] - > anim - > cursor < < precision ) > > precision ;
meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vy ] . vz = lerpD ( meshes [ k ] - > anim - > data [ meshes [ k ] - > anim - > lerpCursor * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vy ] . vz < < precision , meshes [ k ] - > anim - > data [ ( meshes [ k ] - > anim - > lerpCursor + 1 ) * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vy ] . vz < < precision , meshes [ k ] - > anim - > cursor < < precision ) > > precision ;
meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vy ] . vy = lerpD ( meshes [ k ] - > anim - > data [ meshes [ k ] - > anim - > lerpCursor * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vy ] . vy < < precision , meshes [ k ] - > anim - > data [ ( meshes [ k ] - > anim - > lerpCursor + 1 ) * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vy ] . vy < < precision , meshes [ k ] - > anim - > cursor < < precision ) > > precision ;
meshes [ k ] - > anim - > cursor + = 2 * meshes [ k ] - > anim - > dir ;
//~ FntPrint("%d %d\n", meshes[k]->tmesh->v[meshes[k]->index[t].order.vx].vx, meshes[k]->tmesh->v[meshes[k]->index[t].order.vx].vz);
//~ FntPrint("%d %d\n", *&meshes[k]->index[t].order.vx, *(&meshes[k]->index[t].order.vx+1));
//~ FntPrint("Anim fps : %d\n", meshes[k]->anim->cursor);
// Coord transformation
2021-02-28 11:14:02 +01:00
nclip = RotAverageNclip3 (
2021-03-06 11:45:25 +01:00
& meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vx ] ,
& meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vz ] ,
& meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vy ] ,
( long * ) & poly - > x0 , ( long * ) & poly - > x1 , ( long * ) & poly - > x2 ,
meshes [ k ] - > p ,
meshes [ k ] - > OTz ,
& Flag
) ;
} else {
// No interpolation : just take the vertices coordinates from the anim data
nclip = RotAverageNclip3 (
& meshes [ k ] - > anim - > data [ atime % meshes [ k ] - > anim - > nframes * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vx ] ,
& meshes [ k ] - > anim - > data [ atime % meshes [ k ] - > anim - > nframes * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vz ] ,
& meshes [ k ] - > anim - > data [ atime % meshes [ k ] - > anim - > nframes * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vy ] ,
( long * ) & poly - > x0 , ( long * ) & poly - > x1 , ( long * ) & poly - > x2 ,
meshes [ k ] - > p ,
meshes [ k ] - > OTz ,
& Flag
) ;
}
} else {
// No animation
// Use model's regular vertex pos
nclip = RotAverageNclip3 (
& meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vx ] ,
& meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vz ] ,
& meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vy ] ,
( long * ) & poly - > x0 , ( long * ) & poly - > x1 , ( long * ) & poly - > x2 ,
meshes [ k ] - > p ,
meshes [ k ] - > OTz ,
& Flag
2021-02-28 11:14:02 +01:00
) ;
}
2021-03-06 11:45:25 +01:00
if ( nclip > 0 & & * meshes [ k ] - > OTz > 0 & & ( * meshes [ k ] - > p < 4096 ) ) {
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
SetPolyGT3 ( poly ) ;
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
// Transparency effect
if ( * meshes [ k ] - > isPrism ) {
// Use current DRAWENV clip as TPAGE
( ( POLY_GT3 * ) poly ) - > tpage = getTPage ( meshes [ k ] - > tim - > mode & 0x3 , 0 ,
draw [ db ] . clip . x ,
draw [ db ] . clip . y
) ;
//~ setShadeTex(poly, 1);
// Use projected coordinates (results from RotAverage...) as UV coords and clamp them to 0-255,0-224
setUV3 ( poly , ( poly - > x0 < 0 ? 0 : poly - > x0 > 255 ? 255 : poly - > x0 ) ,
( poly - > y0 < 0 ? 0 : poly - > y0 > 224 ? 224 : poly - > y0 ) ,
( poly - > x1 < 0 ? 0 : poly - > x1 > 255 ? 255 : poly - > x1 ) ,
( poly - > y1 < 0 ? 0 : poly - > y1 > 224 ? 224 : poly - > y1 ) ,
( poly - > x2 < 0 ? 0 : poly - > x2 > 255 ? 255 : poly - > x2 ) ,
( poly - > y2 < 0 ? 0 : poly - > y2 > 224 ? 224 : poly - > y2 )
) ;
} else {
// Use regular TPAGE
( ( POLY_GT3 * ) poly ) - > tpage = getTPage ( meshes [ k ] - > tim - > mode & 0x3 , 0 ,
meshes [ k ] - > tim - > prect - > x ,
meshes [ k ] - > tim - > prect - > y
) ;
//~ if (!meshes[k]->isBG) {
//~ setShadeTex(poly, 1);
//~ setSemiTrans(poly, 1);
//~ }
setUV3 ( poly , meshes [ k ] - > tmesh - > u [ i ] . vx , meshes [ k ] - > tmesh - > u [ i ] . vy + meshes [ k ] - > tim - > prect - > y ,
meshes [ k ] - > tmesh - > u [ i + 2 ] . vx , meshes [ k ] - > tmesh - > u [ i + 2 ] . vy + meshes [ k ] - > tim - > prect - > y ,
meshes [ k ] - > tmesh - > u [ i + 1 ] . vx , meshes [ k ] - > tmesh - > u [ i + 1 ] . vy + meshes [ k ] - > tim - > prect - > y ) ;
//~ }
//~ else {
//~ // Use model UV coordinates
//~ setUV3(poly, 255 , 255,
//~ 255 , 255,
//~ 255 , 255);
//~ }
}
// If tim mode == 0 | 1, set CLUT coordinates
if ( ( meshes [ k ] - > tim - > mode & 0x3 ) < 2 ) {
setClut ( poly ,
meshes [ k ] - > tim - > crect - > x ,
meshes [ k ] - > tim - > crect - > y ) ;
}
// If vertex anim has updated normals
//~ if (*meshes[k]->isAnim){
//~ NormalColorDpq(&meshes[k]->anim->normals[ atime%19 * modelCylindre_anim.nvert + meshes[k]->index[t]], &meshes[k]->tmesh->c[meshes[k]->index[t]], *meshes[k]->p, &outCol);
//~ NormalColorDpq(&meshes[k]->anim->normals[ atime%19 * modelCylindre_anim.nvert + meshes[k]->index[t+1]], &meshes[k]->tmesh->c[meshes[k]->index[t+1]], *meshes[k]->p, &outCol1);
//~ NormalColorDpq(&meshes[k]->anim->normals[ atime%19 * modelCylindre_anim.nvert + meshes[k]->index[t+2]], &meshes[k]->tmesh->c[meshes[k]->index[t+2]], *meshes[k]->p, &outCol2);
//~ } else {
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
// using precalc BG, default to black
CVECTOR outCol = { 128 , 128 , 128 , 0 } ;
CVECTOR outCol1 = { 128 , 128 , 128 , 0 } ;
CVECTOR outCol2 = { 128 , 128 , 128 , 0 } ;
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
//~ if ( !camPtr->tim_data ) {
// default to neutral grey
//~ outCol.r , outCol.g , outCol.b = 128;
//~ outCol1.r, outCol1.g, outCol1.b = 128;
//~ outCol2.r, outCol2.g, outCol2.b = 128;
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
NormalColorDpq ( & meshes [ k ] - > tmesh - > n [ meshes [ k ] - > index [ t ] . order . vx ] , & meshes [ k ] - > tmesh - > c [ meshes [ k ] - > index [ t ] . order . vx ] , * meshes [ k ] - > p , & outCol ) ;
NormalColorDpq ( & meshes [ k ] - > tmesh - > n [ meshes [ k ] - > index [ t ] . order . vz ] , & meshes [ k ] - > tmesh - > c [ meshes [ k ] - > index [ t ] . order . vz ] , * meshes [ k ] - > p , & outCol1 ) ;
NormalColorDpq ( & meshes [ k ] - > tmesh - > n [ meshes [ k ] - > index [ t ] . order . vy ] , & meshes [ k ] - > tmesh - > c [ meshes [ k ] - > index [ t ] . order . vy ] , * meshes [ k ] - > p , & outCol2 ) ;
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
//~ }
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
if ( * meshes [ k ] - > isPrism ) {
// Use un-interpolated (i.e: no light, no fog) colors
setRGB0 ( poly , meshes [ k ] - > tmesh - > c [ i ] . r , meshes [ k ] - > tmesh - > c [ i ] . g , meshes [ k ] - > tmesh - > c [ i ] . b ) ;
setRGB1 ( poly , meshes [ k ] - > tmesh - > c [ i + 1 ] . r , meshes [ k ] - > tmesh - > c [ i + 1 ] . g , meshes [ k ] - > tmesh - > c [ i + 1 ] . b ) ;
setRGB2 ( poly , meshes [ k ] - > tmesh - > c [ i + 2 ] . r , meshes [ k ] - > tmesh - > c [ i + 2 ] . g , meshes [ k ] - > tmesh - > c [ i + 2 ] . b ) ;
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
} else {
setRGB0 ( poly , outCol . r , outCol . g , outCol . b ) ;
setRGB1 ( poly , outCol1 . r , outCol1 . g , outCol1 . b ) ;
setRGB2 ( poly , outCol2 . r , outCol2 . g , outCol2 . b ) ;
}
if ( ( * meshes [ k ] - > OTz > 0 ) & & ( * meshes [ k ] - > OTz < OTLEN ) & & ( * meshes [ k ] - > p < 4096 ) ) {
AddPrim ( & ot [ db ] [ * meshes [ k ] - > OTz - 2 ] , poly ) ; // OTz - 2
}
nextpri + = sizeof ( POLY_GT3 ) ;
2021-02-28 11:14:02 +01:00
}
2021-03-06 11:45:25 +01:00
t + = 1 ;
//~ if (*meshes[k]->isRigidBody){
//~ PopMatrix(); // Pull previous matrix from stack (slow)
//~ }
2021-02-28 11:14:02 +01:00
}
//~ }
}
// mesh is POLY_GT4 ( quads )
if ( meshes [ k ] - > index [ t ] . code = = 8 ) {
t = 0 ;
for ( i = 0 ; i < ( meshes [ k ] - > tmesh - > len * 4 ) ; i + = 4 ) {
2021-03-06 11:45:25 +01:00
// if mesh is not part of BG, draw them, else, discard
if ( ! * meshes [ k ] - > isBG ) {
poly4 = ( POLY_GT4 * ) nextpri ;
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
// Vertex Anim
if ( * meshes [ k ] - > isAnim ) {
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
// with interpolation
if ( meshes [ k ] - > anim - > interpolate ) {
// ping pong
//~ if (meshes[k]->anim->cursor > 4096 || meshes[k]->anim->cursor < 0){
//~ meshes[k]->anim->dir *= -1;
//~ }
short precision = 12 ;
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
if ( meshes [ k ] - > anim - > cursor > 1 < < precision ) {
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
if ( meshes [ k ] - > anim - > lerpCursor < meshes [ k ] - > anim - > nframes - 1 ) {
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
meshes [ k ] - > anim - > lerpCursor + + ;
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
meshes [ k ] - > anim - > cursor = 0 ;
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
}
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
if ( meshes [ k ] - > anim - > lerpCursor = = meshes [ k ] - > anim - > nframes - 1 ) {
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
meshes [ k ] - > anim - > lerpCursor = 0 ;
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
meshes [ k ] - > anim - > cursor = 0 ;
}
2021-02-28 11:14:02 +01:00
}
2021-03-06 11:45:25 +01:00
meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vx ] . vx = lerpD ( meshes [ k ] - > anim - > data [ meshes [ k ] - > anim - > lerpCursor * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vx ] . vx < < 12 , meshes [ k ] - > anim - > data [ ( meshes [ k ] - > anim - > lerpCursor + 1 ) * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vx ] . vx < < 12 , meshes [ k ] - > anim - > cursor < < 12 ) > > 12 ;
meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vx ] . vz = lerpD ( meshes [ k ] - > anim - > data [ meshes [ k ] - > anim - > lerpCursor * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vx ] . vz < < 12 , meshes [ k ] - > anim - > data [ ( meshes [ k ] - > anim - > lerpCursor + 1 ) * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vx ] . vz < < 12 , meshes [ k ] - > anim - > cursor < < 12 ) > > 12 ;
meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vx ] . vy = lerpD ( meshes [ k ] - > anim - > data [ meshes [ k ] - > anim - > lerpCursor * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vx ] . vy < < 12 , meshes [ k ] - > anim - > data [ ( meshes [ k ] - > anim - > lerpCursor + 1 ) * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vx ] . vy < < 12 , meshes [ k ] - > anim - > cursor < < 12 ) > > 12 ;
meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vz ] . vx = lerpD ( meshes [ k ] - > anim - > data [ meshes [ k ] - > anim - > lerpCursor * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vz ] . vx < < 12 , meshes [ k ] - > anim - > data [ ( meshes [ k ] - > anim - > lerpCursor + 1 ) * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vz ] . vx < < 12 , meshes [ k ] - > anim - > cursor < < 12 ) > > 12 ;
meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vz ] . vz = lerpD ( meshes [ k ] - > anim - > data [ meshes [ k ] - > anim - > lerpCursor * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vz ] . vz < < 12 , meshes [ k ] - > anim - > data [ ( meshes [ k ] - > anim - > lerpCursor + 1 ) * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vz ] . vz < < 12 , meshes [ k ] - > anim - > cursor < < 12 ) > > 12 ;
meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vz ] . vy = lerpD ( meshes [ k ] - > anim - > data [ meshes [ k ] - > anim - > lerpCursor * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vz ] . vy < < 12 , meshes [ k ] - > anim - > data [ ( meshes [ k ] - > anim - > lerpCursor + 1 ) * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vz ] . vy < < 12 , meshes [ k ] - > anim - > cursor < < 12 ) > > 12 ;
meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vy ] . vx = lerpD ( meshes [ k ] - > anim - > data [ meshes [ k ] - > anim - > lerpCursor * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vy ] . vx < < 12 , meshes [ k ] - > anim - > data [ ( meshes [ k ] - > anim - > lerpCursor + 1 ) * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vy ] . vx < < 12 , meshes [ k ] - > anim - > cursor < < 12 ) > > 12 ;
meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vy ] . vz = lerpD ( meshes [ k ] - > anim - > data [ meshes [ k ] - > anim - > lerpCursor * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vy ] . vz < < 12 , meshes [ k ] - > anim - > data [ ( meshes [ k ] - > anim - > lerpCursor + 1 ) * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vy ] . vz < < 12 , meshes [ k ] - > anim - > cursor < < 12 ) > > 12 ;
meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vy ] . vy = lerpD ( meshes [ k ] - > anim - > data [ meshes [ k ] - > anim - > lerpCursor * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vy ] . vy < < 12 , meshes [ k ] - > anim - > data [ ( meshes [ k ] - > anim - > lerpCursor + 1 ) * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vy ] . vy < < 12 , meshes [ k ] - > anim - > cursor < < 12 ) > > 12 ;
meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . pad ] . vx = lerpD ( meshes [ k ] - > anim - > data [ meshes [ k ] - > anim - > lerpCursor * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . pad ] . vx < < 12 , meshes [ k ] - > anim - > data [ ( meshes [ k ] - > anim - > lerpCursor + 1 ) * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . pad ] . vx < < 12 , meshes [ k ] - > anim - > cursor < < 12 ) > > 12 ;
meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . pad ] . vz = lerpD ( meshes [ k ] - > anim - > data [ meshes [ k ] - > anim - > lerpCursor * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . pad ] . vz < < 12 , meshes [ k ] - > anim - > data [ ( meshes [ k ] - > anim - > lerpCursor + 1 ) * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . pad ] . vz < < 12 , meshes [ k ] - > anim - > cursor < < 12 ) > > 12 ;
meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . pad ] . vy = lerpD ( meshes [ k ] - > anim - > data [ meshes [ k ] - > anim - > lerpCursor * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . pad ] . vy < < 12 , meshes [ k ] - > anim - > data [ ( meshes [ k ] - > anim - > lerpCursor + 1 ) * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . pad ] . vy < < 12 , meshes [ k ] - > anim - > cursor < < 12 ) > > 12 ;
meshes [ k ] - > anim - > cursor + = 2 * meshes [ k ] - > anim - > dir ;
// Coord transformations
nclip = RotAverageNclip4 (
& meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . pad ] ,
& meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vz ] ,
& meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vx ] ,
& meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vy ] ,
( long * ) & poly4 - > x0 , ( long * ) & poly4 - > x1 , ( long * ) & poly4 - > x2 , ( long * ) & poly4 - > x3 ,
meshes [ k ] - > p ,
meshes [ k ] - > OTz ,
& Flag
) ;
} else {
// No interpolation, use all vertices coordinates in anim data
OTz = RotAverageNclip4 (
& meshes [ k ] - > anim - > data [ atime % meshes [ k ] - > anim - > nframes * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . pad ] ,
& meshes [ k ] - > anim - > data [ atime % meshes [ k ] - > anim - > nframes * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vz ] ,
& meshes [ k ] - > anim - > data [ atime % meshes [ k ] - > anim - > nframes * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vx ] ,
& meshes [ k ] - > anim - > data [ atime % meshes [ k ] - > anim - > nframes * meshes [ k ] - > anim - > nvert + meshes [ k ] - > index [ t ] . order . vy ] ,
( long * ) & poly4 - > x0 , ( long * ) & poly4 - > x1 , ( long * ) & poly4 - > x2 , ( long * ) & poly4 - > x3 ,
meshes [ k ] - > p ,
meshes [ k ] - > OTz ,
& Flag
) ;
2021-02-28 11:14:02 +01:00
}
2021-03-06 11:45:25 +01:00
} else {
// No animation
// Use regulare vertex coords
2021-02-28 11:14:02 +01:00
nclip = RotAverageNclip4 (
& meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . pad ] ,
& meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vz ] ,
& meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vx ] ,
& meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vy ] ,
( long * ) & poly4 - > x0 , ( long * ) & poly4 - > x1 , ( long * ) & poly4 - > x2 , ( long * ) & poly4 - > x3 ,
meshes [ k ] - > p ,
2021-03-06 11:45:25 +01:00
meshes [ k ] - > OTz ,
2021-02-28 11:14:02 +01:00
& Flag
) ;
}
2021-03-06 11:45:25 +01:00
if ( nclip > 0 & & * meshes [ k ] - > OTz > 0 & & ( * meshes [ k ] - > p < 4096 ) ) {
SetPolyGT4 ( poly4 ) ;
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
// FIXME : Polygon subdiv - is it working ?
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
OTc = OTz > > 4 ;
FntPrint ( " OTC:%d " , OTc ) ;
if ( OTc < 15 ) {
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
if ( OTc > 5 ) div . ndiv = 1 ; else div . ndiv = 2 ;
DivideGT4 (
// Vertex coord
& meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vx ] ,
& meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vy ] ,
& meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . pad ] ,
& meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] . order . vz ] ,
// UV coord
meshes [ k ] - > tmesh - > u [ i + 3 ] ,
meshes [ k ] - > tmesh - > u [ i + 2 ] ,
meshes [ k ] - > tmesh - > u [ i + 0 ] ,
meshes [ k ] - > tmesh - > u [ i + 1 ] ,
// Color
meshes [ k ] - > tmesh - > c [ i ] ,
meshes [ k ] - > tmesh - > c [ i + 1 ] ,
meshes [ k ] - > tmesh - > c [ i + 2 ] ,
meshes [ k ] - > tmesh - > c [ i + 3 ] ,
// Gpu packet
poly4 ,
& ot [ db ] [ OTz ] ,
& div ) ;
//~ // Increment primitive list pointer
nextpri + = ( ( sizeof ( POLY_GT4 ) + 3 ) / 4 ) * ( ( 1 < < ( div . ndiv ) ) < < ( div . ndiv ) ) ;
triCount = ( ( 1 < < ( div . ndiv ) ) < < ( div . ndiv ) ) ;
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
}
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
// Transparency effect
if ( * meshes [ k ] - > isPrism ) {
// Use current DRAWENV clip as TPAGE
( ( POLY_GT4 * ) poly4 ) - > tpage = getTPage ( meshes [ k ] - > tim - > mode & 0x3 , 0 ,
draw [ db ] . clip . x ,
draw [ db ] . clip . y
) ;
//SetShadeTex(poly4, 1);
// Use projected coordinates (results from RotAverage...) as UV coords and clamp them to 0-255,0-224
setUV4 ( poly4 , ( poly4 - > x0 < 0 ? 0 : poly4 - > x0 > 255 ? 255 : poly4 - > x0 ) ,
( poly4 - > y0 < 0 ? 0 : poly4 - > y0 > 224 ? 224 : poly4 - > y0 ) ,
( poly4 - > x1 < 0 ? 0 : poly4 - > x1 > 255 ? 255 : poly4 - > x1 ) ,
( poly4 - > y1 < 0 ? 0 : poly4 - > y1 > 224 ? 224 : poly4 - > y1 ) ,
( poly4 - > x2 < 0 ? 0 : poly4 - > x2 > 255 ? 255 : poly4 - > x2 ) ,
( poly4 - > y2 < 0 ? 0 : poly4 - > y2 > 224 ? 224 : poly4 - > y2 ) ,
( poly4 - > x3 < 0 ? 0 : poly4 - > x3 > 255 ? 255 : poly4 - > x3 ) ,
( poly4 - > y3 < 0 ? 0 : poly4 - > y3 > 224 ? 224 : poly4 - > y3 )
) ;
} else {
// Use regular TPAGE
( ( POLY_GT4 * ) poly4 ) - > tpage = getTPage ( meshes [ k ] - > tim - > mode & 0x3 , 0 ,
meshes [ k ] - > tim - > prect - > x ,
meshes [ k ] - > tim - > prect - > y
) ;
// Use model UV coordinates
setUV4 ( poly4 , meshes [ k ] - > tmesh - > u [ i + 3 ] . vx , meshes [ k ] - > tmesh - > u [ i + 3 ] . vy + meshes [ k ] - > tim - > prect - > y ,
meshes [ k ] - > tmesh - > u [ i + 2 ] . vx , meshes [ k ] - > tmesh - > u [ i + 2 ] . vy + meshes [ k ] - > tim - > prect - > y ,
meshes [ k ] - > tmesh - > u [ i + 0 ] . vx , meshes [ k ] - > tmesh - > u [ i + 0 ] . vy + meshes [ k ] - > tim - > prect - > y ,
meshes [ k ] - > tmesh - > u [ i + 1 ] . vx , meshes [ k ] - > tmesh - > u [ i + 1 ] . vy + meshes [ k ] - > tim - > prect - > y ) ;
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
}
// If tim mode == 0 | 1, set CLUT coordinates
if ( ( meshes [ k ] - > tim - > mode & 0x3 ) < 2 ) {
setClut ( poly ,
meshes [ k ] - > tim - > crect - > x ,
meshes [ k ] - > tim - > crect - > y ) ;
}
CVECTOR outCol = { 128 , 128 , 128 , 0 } ;
CVECTOR outCol1 = { 128 , 128 , 128 , 0 } ;
CVECTOR outCol2 = { 128 , 128 , 128 , 0 } ;
CVECTOR outCol3 = { 128 , 128 , 128 , 0 } ;
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
NormalColorDpq ( & meshes [ k ] - > tmesh - > n [ meshes [ k ] - > index [ t ] . order . pad ] , & meshes [ k ] - > tmesh - > c [ meshes [ k ] - > index [ t ] . order . pad ] , * meshes [ k ] - > p , & outCol ) ;
NormalColorDpq ( & meshes [ k ] - > tmesh - > n [ meshes [ k ] - > index [ t ] . order . vz ] , & meshes [ k ] - > tmesh - > c [ meshes [ k ] - > index [ t ] . order . vz ] , * meshes [ k ] - > p , & outCol1 ) ;
NormalColorDpq ( & meshes [ k ] - > tmesh - > n [ meshes [ k ] - > index [ t ] . order . vx ] , & meshes [ k ] - > tmesh - > c [ meshes [ k ] - > index [ t ] . order . vx ] , * meshes [ k ] - > p , & outCol2 ) ;
NormalColorDpq ( & meshes [ k ] - > tmesh - > n [ meshes [ k ] - > index [ t ] . order . vy ] , & meshes [ k ] - > tmesh - > c [ meshes [ k ] - > index [ t ] . order . vy ] , * meshes [ k ] - > p , & outCol3 ) ;
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
if ( * meshes [ k ] - > isPrism ) {
// Use un-interpolated (i.e: no light, no fog) colors
setRGB0 ( poly4 , meshes [ k ] - > tmesh - > c [ i ] . r , meshes [ k ] - > tmesh - > c [ i ] . g , meshes [ k ] - > tmesh - > c [ i ] . b ) ;
setRGB1 ( poly4 , meshes [ k ] - > tmesh - > c [ i + 1 ] . r , meshes [ k ] - > tmesh - > c [ i + 1 ] . g , meshes [ k ] - > tmesh - > c [ i + 1 ] . b ) ;
setRGB2 ( poly4 , meshes [ k ] - > tmesh - > c [ i + 2 ] . r , meshes [ k ] - > tmesh - > c [ i + 2 ] . g , meshes [ k ] - > tmesh - > c [ i + 2 ] . b ) ;
setRGB3 ( poly4 , meshes [ k ] - > tmesh - > c [ i + 3 ] . r , meshes [ k ] - > tmesh - > c [ i + 3 ] . g , meshes [ k ] - > tmesh - > c [ i + 3 ] . b ) ;
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
} else {
setRGB0 ( poly4 , outCol . r , outCol . g , outCol . b ) ;
setRGB1 ( poly4 , outCol1 . r , outCol1 . g , outCol1 . b ) ;
setRGB2 ( poly4 , outCol2 . r , outCol2 . g , outCol2 . b ) ;
setRGB3 ( poly4 , outCol3 . r , outCol3 . g , outCol3 . b ) ;
}
if ( ( * meshes [ k ] - > OTz > 0 ) & & ( * meshes [ k ] - > OTz < OTLEN ) & & ( * meshes [ k ] - > p < 4096 ) ) {
AddPrim ( & ot [ db ] [ * meshes [ k ] - > OTz - 3 ] , poly4 ) ; // OTz - 2
}
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
nextpri + = sizeof ( POLY_GT4 ) ;
}
t + = 1 ;
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
}
2021-02-28 11:14:02 +01:00
}
}
// Find and apply light rotation matrix
RotMatrix ( & lgtang , & rotlgt ) ;
MulMatrix0 ( & lgtmat , & rotlgt , & light ) ;
SetLightMatrix ( & light ) ;
applyCamera ( & camera ) ;
2021-03-06 11:45:25 +01:00
2021-02-28 11:14:02 +01:00
}
2021-03-06 11:45:25 +01:00
// Add secondary OT to main OT
AddPrims ( otdisc [ db ] , ot [ db ] + OTLEN - 1 , ot [ db ] ) ;
2021-02-28 11:14:02 +01:00
//~ FntPrint("Time : %d %d dt :%d\n",time, atime, dt);
2021-03-06 11:45:25 +01:00
//~ FntPrint("CamMode: %d Slowmo : %d\nTricount: %d OTz: %d\nOTc: %d, p: %d\n", camMode, actorPtr->anim->interpolate, triCount, *meshes[9]->OTz, OTc, *meshes[9]->p);
2021-02-28 11:14:02 +01:00
//~ FntPrint("Fy: %d Vy:%d\n", actorPtr->body->gForce.vy, actorPtr->body->velocity.vy );
//~ FntPrint("Vy: %4d\n", actorPtr->body->gForce.vy );
2021-03-06 11:45:25 +01:00
//~ FntPrint("%d %d %d", meshes[0]->tim->mode & 0x3, meshes[0]->tim->crect->x, meshes[0]->tim->crect->y);
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
//~ FntPrint("%d", OTc);
2021-02-28 11:14:02 +01:00
FntFlush ( - 1 ) ;
display ( ) ;
//~ frame = VSync(-1);
}
return 0 ;
}
void init ( ) {
// Reset the GPU before doing anything and the controller
PadInit ( 0 ) ;
ResetGraph ( 0 ) ;
// Initialize and setup the GTE
InitGeom ( ) ;
SetGeomOffset ( CENTERX , CENTERY ) ; // x, y offset
SetGeomScreen ( CENTERX ) ; // Distance between eye and screen
// Set the display and draw environments
SetDefDispEnv ( & disp [ 0 ] , 0 , 0 , SCREENXRES , SCREENYRES ) ;
SetDefDispEnv ( & disp [ 1 ] , 0 , SCREENYRES , SCREENXRES , SCREENYRES ) ;
SetDefDrawEnv ( & draw [ 0 ] , 0 , SCREENYRES , SCREENXRES , SCREENYRES ) ;
SetDefDrawEnv ( & draw [ 1 ] , 0 , 0 , SCREENXRES , SCREENYRES ) ;
if ( VMODE )
{
SetVideoMode ( MODE_PAL ) ;
disp [ 0 ] . screen . y + = 8 ;
disp [ 1 ] . screen . y + = 8 ;
}
setRGB0 ( & draw [ 0 ] , BGc . r , BGc . g , BGc . b ) ;
setRGB0 ( & draw [ 1 ] , BGc . r , BGc . g , BGc . b ) ;
draw [ 0 ] . isbg = 1 ;
draw [ 1 ] . isbg = 1 ;
PutDispEnv ( & disp [ db ] ) ;
PutDrawEnv ( & draw [ db ] ) ;
// Init font system
FntLoad ( FNT_POS_X , FNT_POS_Y ) ;
FntOpen ( 16 , 180 , 240 , 96 , 0 , 512 ) ;
}
void display ( void ) {
DrawSync ( 0 ) ;
vs = VSync ( 0 ) ;
PutDispEnv ( & disp [ db ] ) ;
PutDrawEnv ( & draw [ db ] ) ;
SetDispMask ( 1 ) ;
2021-03-06 11:45:25 +01:00
// Main OT
DrawOTag ( otdisc [ db ] + OT2LEN - 1 ) ;
// Secondary OT
//~ DrawOTag(ot[db] + OTLEN - 1);
2021-02-28 11:14:02 +01:00
db = ! db ;
nextpri = primbuff [ db ] ;
}
// Nic's function
void getCameraXZ ( int * x , int * z , int actorX , int actorZ , int angle , int distance ) {
// Using Nic's Costable : https://github.com/grumpycoders/Balau/blob/master/tests/test-Handles.cc#L20-L102
// https://godbolt.org/z/q6cMcj
* x = ( actorX * ONE ) + ( distance * nsin ( angle ) ) ;
* z = ( actorZ * ONE ) - ( distance * ncos ( angle ) ) ;
}
// @Will : you might want to use sin/cos to move the camera in a circle but you could do that by moving it along it’ s tangent and then clamping the distance
void applyCamera ( CAMERA * cam ) {
VECTOR vec ; // Vector that holds the output values of the following instructions
RotMatrix_gte ( & cam - > rot , & cam - > mat ) ; // Convert rotation angle in psx units (360° == 4096) to rotation matrix)
ApplyMatrixLV ( & cam - > mat , & cam - > pos , & vec ) ; // Multiply matrix by vector pos and output to vec
TransMatrix ( & cam - > mat , & vec ) ; // Apply transform vector
SetRotMatrix ( & cam - > mat ) ; // Set Rotation matrix
SetTransMatrix ( & cam - > mat ) ; // Set Transform matrix
}
void setCameraPos ( VECTOR pos , SVECTOR rot ) {
camera . pos = pos ;
camera . rot = rot ;
} ;
void LoadTexture ( u_long * tim , TIM_IMAGE * tparam ) { // This part is from Lameguy64's tutorial series : lameguy64.net/svn/pstutorials/chapter1/3-textures.html login/pw: annoyingmous
OpenTIM ( tim ) ; // Open the tim binary data, feed it the address of the data in memory
ReadTIM ( tparam ) ; // This read the header of the TIM data and sets the corresponding members of the TIM_IMAGE structure
LoadImage ( tparam - > prect , tparam - > paddr ) ; // Transfer the data from memory to VRAM at position prect.x, prect.y
DrawSync ( 0 ) ; // Wait for the drawing to end
if ( tparam - > mode & 0x8 ) { // check 4th bit // If 4th bit == 1, TIM has a CLUT
LoadImage ( tparam - > crect , tparam - > caddr ) ; // Load it to VRAM at position crect.x, crect.y
DrawSync ( 0 ) ; // Wait for drawing to end
}
}
int lerp ( int start , int end , int factor ) {
// lerp interpolated cam movement
// InBetween = Value 1 + ( ( Value2 - Value1 ) * lerpValue ) ;
// lerpValue should be a float between 0 and 1.
// easeIn
return ( start ) + ( ( end - start ) * factor ) > > 12 ;
}
long long easeIn ( long long i , int div ) {
return ( ( i < < 7 ) * ( i < < 7 ) * ( i < < 7 ) / div ) > > 19 ;
//~ ((i << 7) * (i << 7) * (i << 7) / div ) >> 19
}
int easeOut ( int i ) {
return ( 4096 > > 7 ) - ( ( 4096 - ( i < < 7 ) ) * ( 4096 - ( i < < 7 ) ) ) > > 12 ;
}
int easeInOut ( int i , int div ) {
return lerp ( easeIn ( i , div ) , easeOut ( i ) , i ) ;
}
SVECTOR SVlerp ( SVECTOR start , SVECTOR end , int factor ) {
SVECTOR output = { 0 , 0 , 0 , 0 } ;
output . vx = lerp ( start . vx , end . vx , factor ) ;
output . vy = lerp ( start . vy , end . vy , factor ) ;
output . vz = lerp ( start . vz , end . vz , factor ) ;
return output ;
}
VECTOR getIntCollision ( BODY one , BODY two ) {
VECTOR d1 , d2 , col ;
d1 . vx = ( one . position . vx - one . max . vx ) - ( two . position . vx + two . min . vx ) ;
d1 . vy = ( one . position . vy + one . max . vy ) - ( two . position . vy + two . min . vy ) ;
d1 . vz = ( one . position . vz - one . max . vz ) - ( two . position . vz + two . min . vz ) ;
d2 . vx = ( two . position . vx + two . max . vx ) - ( one . position . vx + one . max . vx ) ;
//~ d2.vy = (two.position.vy + two.max.vy) - (one.position.vy + one.max.vy);
d2 . vy = ( two . position . vy + two . max . vy ) - ( one . position . vy + one . min . vy ) ;
d2 . vz = ( two . position . vz + two . max . vz ) - ( one . position . vz + one . max . vz ) ;
col . vx = ! ( d1 . vx > 0 & & d2 . vx > 0 ) ;
col . vy = d1 . vy > 0 & & d2 . vy > 0 ;
col . vz = ! ( d1 . vz > 0 & & d2 . vz > 0 ) ;
return col ;
}
VECTOR getExtCollision ( BODY one , BODY two ) {
VECTOR d1 , d2 , col ;
d1 . vx = ( one . position . vx + one . max . vx ) - ( two . position . vx + two . min . vx ) ;
d1 . vy = ( one . position . vy + one . max . vy ) - ( two . position . vy + two . min . vy ) ;
d1 . vz = ( one . position . vz + one . max . vz ) - ( two . position . vz + two . min . vz ) ;
d2 . vx = ( two . position . vx + two . max . vx ) - ( one . position . vx + one . min . vx ) ;
d2 . vy = ( two . position . vy + two . max . vy ) - ( one . position . vy + one . min . vy ) ;
d2 . vz = ( two . position . vz + two . max . vz ) - ( one . position . vz + one . min . vz ) ;
col . vx = d1 . vx > 0 & & d2 . vx > 0 ;
col . vy = d1 . vy > 0 & & d2 . vy > 0 ;
col . vz = d1 . vz > 0 & & d2 . vz > 0 ;
return col ;
}
void applyAcceleration ( BODY * actor ) {
short dt = 1 ;
VECTOR acceleration = { actor - > invMass * actor - > gForce . vx , ( actor - > invMass * actor - > gForce . vy ) + ( gravity * ONE ) , actor - > invMass * actor - > gForce . vz } ;
//~ FntPrint("acc: %d %d %d\n", acceleration.vx, acceleration.vy, acceleration.vz );
actor - > velocity . vx + = ( acceleration . vx * dt ) > > 12 ;
actor - > velocity . vy + = ( acceleration . vy * dt ) > > 12 ;
actor - > velocity . vz + = ( acceleration . vz * dt ) > > 12 ;
//~ FntPrint("acc: %d %d %d\n", acceleration.vx / ONE, acceleration.vy / ONE, acceleration.vz / ONE );
actor - > position . vx + = ( actor - > velocity . vx * dt ) ;
actor - > position . vy + = ( actor - > velocity . vy * dt ) ;
actor - > position . vz + = ( actor - > velocity . vz * dt ) ;
//~ FntPrint("vel: %d %d %d\n", actor->velocity.vx, actor->velocity.vy, actor->velocity.vz );
}
//~ // https://gamedevelopment.tutsplus.com/tutorials/how-to-create-a-custom-2d-physics-engine-the-basics-and-impulse-resolution--gamedev-6331
void ResolveCollision ( BODY * one , BODY * two ) {
//~ FntPrint("rv: %d, %d, %d\n", one->velocity.vx, one->velocity.vy, one->velocity.vz);
// Calculate relative velocity
VECTOR rv = { subVector ( one - > velocity , two - > velocity ) } ;
//~ FntPrint("rv: %d, %d, %d\n", rv.vx,rv.vy,rv.vz);
// Collision normal
VECTOR normal = { subVector ( two - > position , one - > position ) } ;
// Normalize collision normal
normal . vx = normal . vx > 0 ? 1 : normal . vx < 0 ? - 1 : 0 ;
normal . vy = normal . vy > 256 ? 1 : normal . vy < - 256 ? - 1 : 0 ;
normal . vz = normal . vz > 0 ? 1 : normal . vz < 0 ? - 1 : 0 ;
//~ FntPrint("norm: %d, %d, %d\n", normal.vx,normal.vy,normal.vz);
// Calculate relative velocity in terms of the normal direction
long velAlongNormal = dotProduct ( rv , normal ) ;
//~ FntPrint("velN: %d\n", velAlongNormal);
// Do not resolve if velocities are separating
if ( velAlongNormal > 0 )
return ;
// Calculate restitution
long e = min ( one - > restitution , two - > restitution ) ;
//~ FntPrint("e: %d\n", e);
//~ // Calculate impulse scalar
long j = - ( 1 + e ) * velAlongNormal * ONE ;
j / = one - > invMass + two - > invMass ;
//~ j /= ONE;
//~ FntPrint("j: %d\n", j);
// Apply impulse
applyVector ( & normal , j , j , j , * = ) ;
//~ FntPrint("Cnormal %d %d %d\n",normal.vx,normal.vy,normal.vz);
VECTOR velOne = normal ;
VECTOR velTwo = normal ;
applyVector ( & velOne , one - > invMass , one - > invMass , one - > invMass , * = ) ;
applyVector ( & velTwo , two - > invMass , two - > invMass , two - > invMass , * = ) ;
//~ FntPrint("V1 %d %d %d\n", velOne.vx/4096,velOne.vy/4096,velOne.vz/4096);
//~ FntPrint("V2 %d %d %d\n", velTwo.vx/4096,velTwo.vy/4096,velTwo.vz/4096);
applyVector ( & one - > velocity , velOne . vx / 4096 / 4096 , velOne . vy / 4096 / 4096 , velOne . vz / 4096 / 4096 , + = ) ;
applyVector ( & two - > velocity , velTwo . vx / 4096 / 4096 , velTwo . vy / 4096 / 4096 , velTwo . vz / 4096 / 4096 , - = ) ;
//~ FntPrint("V1 %d %d %d\n", velOne.vx/4096/4096,velOne.vy/4096/4096,velOne.vz/4096/4096);
//~ FntPrint("V2 %d %d %d\n", velTwo.vx/4096/4096,velTwo.vy/4096/4096,velTwo.vz/4096/4096);
}
VECTOR angularMom ( BODY body ) {
// L = r * p
// p = m * v
VECTOR w = { 0 , 0 , 0 , 0 } ;
int r = ( body . max . vx - body . min . vx ) / 2 / SCALE ;
w . vx = ( r * body . mass * body . velocity . vx ) ;
w . vy = ( r * body . mass * body . velocity . vy ) ;
w . vz = ( r * body . mass * body . velocity . vz ) ;
//~ FntPrint("v: %d, r:%d, w:%d\n", body.velocity.vz * r, r * r, w.vz);
return w ;
}
// From : https://github.com/grumpycoders/pcsx-redux/blob/7438e9995833db5bc1e14da735bbf9dc78300f0b/src/mips/shell/math.h
static inline int32_t dMul ( int32_t a , int32_t b ) {
long long r = a ;
r * = b ;
return r > > 24 ;
}
// standard lerp function
// s = source, an arbitrary number up to 2^24
// d = destination, an arbitrary number up to 2^24
// p = position, a number between 0 and 256, inclusive
// p = 0 means output = s
// p = 256 means output = d
static inline uint32_t lerpU ( uint32_t start , uint32_t dest , unsigned pos ) { return ( start * ( 256 - pos ) + dest * pos ) > > 8 ; }
static inline int32_t lerpS ( int32_t start , int32_t dest , unsigned pos ) { return ( start * ( 256 - pos ) + dest * pos ) > > 8 ; }
// start, dest and pos have to be << x, then the result has to be >> x where x defines precision:
// precision = 2^24 - 2^x
// << x : 0 < pos < precision
// https://discord.com/channels/642647820683444236/646765703143227394/811318550978494505
// my angles are between 0 and 2048 (full circle), so 2^11 for the range of angles; with numbers on a 8.24 representation, a 1.0 angle (or 2pi) means it's 2^24, so to "convert" my angles from 8.24 to my internal discrete cos, I only have to shift by 13
static inline int32_t lerpD ( int32_t start , int32_t dest , int32_t pos ) { return dMul ( start , 16777216 - pos ) + dMul ( dest , pos ) ; }
static inline long long lerpL ( long long start , long long dest , long long pos ) { return dMul ( ( start < < 12 ) , 16777216 - ( pos < < 12 ) ) + dMul ( ( dest < < 12 ) , ( pos < < 12 ) ) > > 12 ; }
// A few notes on the following code :
int ncos ( unsigned int t ) {
t % = DC_2PI ;
int r ;
if ( t < DC_PI2 ) {
r = m_cosTable [ t ] ;
} else if ( t < DC_PI ) {
r = - m_cosTable [ DC_PI - 1 - t ] ;
} else if ( t < ( DC_PI + DC_PI2 ) ) {
r = - m_cosTable [ t - DC_PI ] ;
} else {
r = m_cosTable [ DC_2PI - 1 - t ] ;
} ;
return r > > 12 ;
} ;
// sin(x) = cos(x - pi / 2)
int nsin ( unsigned int t ) {
t % = DC_2PI ;
if ( t < DC_PI2 ) {
return ncos ( t + DC_2PI - DC_PI2 ) ;
} ;
return ncos ( t - DC_PI2 ) ;
} ;
// f(n) = cos(n * 2pi / 2048) <- 2048 is == DC_2PI value
// f(n) = 2 * f(1) * f(n - 1) - f(n - 2)
void generateTable ( void ) {
m_cosTable [ 0 ] = 16777216 ; // 2^24 * cos(0 * 2pi / 2048) => 2^24 * 1 = 2^24 : here, 2^24 defines the precision we want after the decimal point
static const long long C = 16777137 ; // 2^24 * cos(1 * 2pi / 2048) = C = f(1);
m_cosTable [ 1 ] = C ;
for ( int i = 2 ; i < 512 ; i + + ) {
m_cosTable [ i ] = ( ( C * m_cosTable [ i - 1 ] ) > > 23 ) - m_cosTable [ i - 2 ] ;
m_cosTable [ 511 ] = 0 ;
}
} ;
// https://github.com/Arsunt/TR2Main/blob/411cacb35914c616cb7960c0e677e00c71c7ee88/3dsystem/phd_math.cpp#L432
int patan ( int x , int y ) {
int result ;
int swapBuf ;
int flags = 0 ;
// if either x or y are 0, return 0
if ( x = = 0 & & y = = 0 ) {
return 0 ;
}
if ( x < 0 ) {
flags | = 4 ;
x = - x ;
}
if ( y < 0 ) {
flags | = 2 ;
y = - y ;
}
if ( y > x ) {
flags | = 1 ;
SWAP ( x , y , swapBuf ) ;
}
result = AtanBaseTable [ flags ] + AtanAngleTable [ 0x800 * y / x ] ;
if ( result < 0 ) {
result = - result ;
return result ;
}
}
u_int psqrt ( u_int n ) {
u_int result = 0 ;
u_int base = 0x40000000 ;
u_int basedResult ;
for ( ; base ! = 0 ; base > > = 2 ) {
for ( ; base ! = 0 ; base > > = 2 ) {
basedResult = base + result ;
result > > = 1 ;
if ( basedResult > n ) {
break ;
}
n - = basedResult ;
result | = base ;
}
}
return result ;
}
int cliptest3 ( short * v1 )
{
if ( v1 [ 0 ] < 0 & & v1 [ 2 ] < 0 & & v1 [ 4 ] < 0 ) return 0 ;
if ( v1 [ 1 ] < 0 & & v1 [ 3 ] < 0 & & v1 [ 5 ] < 0 ) return 0 ;
if ( v1 [ 0 ] > SCREENXRES & & v1 [ 2 ] > SCREENXRES & & v1 [ 4 ] > SCREENXRES ) return 0 ;
if ( v1 [ 1 ] > SCREENYRES & & v1 [ 3 ] > SCREENYRES & & v1 [ 5 ] > SCREENYRES ) return 0 ;
return 1 ;
}
void callback ( ) {
u_short pad = PadRead ( 0 ) ;
static u_short lastPad ;
static short forceApplied = 0 ;
int div = 4096 > > 7 ;
static int lerpValues [ 4096 > > 7 ] ;
static short cursor = 0 ;
2021-03-06 11:45:25 +01:00
static short curCamAngle = 0 ;
2021-02-28 11:14:02 +01:00
if ( ! lerpValues [ 0 ] ) {
for ( long long i = 0 ; i < div ; i + + ) {
// lerp
//~ lerpValues[15-i] = lerp(-24, -224, (i << 8));
// lerp with easeOut : replace factor (i << 8) with (frame/duration)² : in fixed point math : ((i << 8) * (i << 8) / (4096 >> 8)) >> 8
lerpValues [ ( div - 1 ) - i ] = lerp ( - 24 , - 264 , easeIn ( i , div ) ) ;
//~ FntPrint("%d, ", lerpValues[div-1-i] );
//~ FntPrint("%d , ", ((i << 8) / (4096 >> 8) / (4096 >> 8)));
//~ FntPrint("1: %d , ", ((i << 8) / (4096 >> 8) * (i << 8) / (4096 >> 8)) >> 4 );
//~ FntPrint("2: %d , ", ((i << 8) * (i << 8) / (4096 >> 8)) >> 8 );
}
}
//~ long long flip = 4096 - (32 << 7);
//~ return (4096 >> 7) - (flip * flip) >> 12;
//~ FntPrint("%d - ", (4096 >> 7) - ((4096 - (0 << 7)) * (4096 - (0 << 7))) >> 12 );
//~ FntPrint("%d - ", easeInOut(105, div));
//~ static short cursor = 0;
if ( timer ) { timer - - ; }
if ( cursor > 0 ) { cursor - - ; }
if ( pad & PADR1 & & ! timer ) {
2021-03-06 11:45:25 +01:00
if ( ! camPtr - > tim_data ) {
if ( camMode < 6 ) {
camMode + + ;
lerping = 0 ;
} else {
setCameraPos ( camPtr - > campos - > pos , camPtr - > campos - > rot ) ;
camPath . cursor = 0 ;
camMode = 0 ;
lerping = 0 ;
}
//~ lastPad = pad;
//~ timer = 10;
//~ pressed = 1;
2021-02-28 11:14:02 +01:00
} else {
2021-03-06 11:45:25 +01:00
if ( curCamAngle < 5 ) {
curCamAngle + + ;
camPtr = camAngles [ curCamAngle ] ;
LoadTexture ( camPtr - > tim_data , camPtr - > BGtim ) ;
} else {
curCamAngle = 0 ;
}
2021-02-28 11:14:02 +01:00
}
lastPad = pad ;
timer = 10 ;
}
if ( ! ( pad & PADR1 ) & & lastPad & PADR1 ) {
//~ pressed = 0;
}
if ( pad & PADL2 ) {
lgtang . vy + = 32 ;
}
if ( pad & PADL1 ) {
lgtang . vz + = 32 ;
}
if ( pad & PADRup & & ! timer ) {
if ( * actorPtr - > isPrism ) {
* actorPtr - > isPrism = 0 ;
} else {
* actorPtr - > isPrism = 1 ;
}
timer = 10 ;
lastPad = pad ;
}
if ( pad & PADRdown & & ! timer ) {
//~ if (actorPtr->body->gForce.vy >= 0 && actorPtr->body->position.vy >= actorPtr->body->min.vy ){
//~ forceApplied -= 150;
//~ }
cursor = div - 15 ;
timer = 30 ;
lastPad = pad ;
}
if ( ! ( pad & PADRdown ) & & lastPad & PADRdown ) {
//~ lastPad = pad;
}
if ( pad & PADRleft & & ! timer ) {
if ( actorPtr - > anim - > interpolate ) {
actorPtr - > anim - > interpolate = 0 ;
} else {
actorPtr - > anim - > interpolate = 1 ;
}
timer = 10 ;
lastPad = pad ;
}
if ( pad & PADLup ) {
actorPtr - > body - > gForce . vz = ( 10 * ncos ( actorPtr - > rot - > vy ) ) > > 12 ;
actorPtr - > body - > gForce . vx = ( 10 * nsin ( actorPtr - > rot - > vy ) ) > > 12 ;
lastPad = pad ;
}
if ( ! ( pad & PADLup ) & & lastPad & PADLup ) {
actorPtr - > body - > gForce . vz = 0 ;
actorPtr - > body - > gForce . vx = 0 ;
}
if ( pad & PADLdown ) {
actorPtr - > body - > gForce . vz = ( - 10 * ncos ( actorPtr - > rot - > vy ) ) > > 12 ;
actorPtr - > body - > gForce . vx = ( - 10 * nsin ( actorPtr - > rot - > vy ) ) > > 12 ;
lastPad = pad ;
}
if ( ! ( pad & PADLdown ) & & lastPad & PADLdown ) {
actorPtr - > body - > gForce . vz = 0 ;
actorPtr - > body - > gForce . vx = 0 ;
lastPad = pad ;
}
if ( pad & PADLleft ) {
2021-03-06 11:45:25 +01:00
//~ actorPtr->rot->vx = 0;
//~ actorPtr->rot->vz = 0;
2021-02-28 11:14:02 +01:00
actorPtr - > rot - > vy - = 10 ;
lastPad = pad ;
}
if ( pad & PADLright ) {
2021-03-06 11:45:25 +01:00
//~ actorPtr->rot->vx = 0;
//~ actorPtr->rot->vz = 0;
2021-02-28 11:14:02 +01:00
actorPtr - > rot - > vy + = 10 ;
lastPad = pad ;
}
//~ actorPtr->body->gForce.vy = forceApplied;
//~ if (actorPtr->body->gForce.vy < 0){
//~ forceApplied += gravity;
//~ }
if ( cursor ) {
actorPtr - > body - > position . vy = lerpValues [ cursor ] ; }
2021-03-06 11:45:25 +01:00
FntPrint ( " Mode : %d Angle: %d \n " , camMode , curCamAngle ) ;
2021-02-28 11:14:02 +01:00
//~ FntPrint("Curs: %d Vy: %d\n", cursor, actorPtr->body->position.vy );
//~ FntPrint("Force: %d\n", forceApplied);
//~ FntPrint("%d\n", !(pad & PADRdown) && lastPad & PADRdown);
//~ FntPrint("sin: %d cos:%d\n", nsin(actorPtr->rot->vy), ncos(actorPtr->rot->vy));
//~ FntPrint("sin: %d cos:%d\n", 10 * nsin(actorPtr->rot->vy) >> 12, 10 * ncos(actorPtr->rot->vy) >> 12);
}