2021-02-03 15:23:20 +01:00
// 3dcam
// With huge help from @NicolasNoble : https://discord.com/channels/642647820683444236/646765703143227394/796876392670429204
/* PSX screen coordinate system
*
* Z +
* /
* /
* + - - - - - - X +
* / |
* / |
* / Y +
* eye */
# include <sys/types.h>
# include <libgte.h>
# include <libgpu.h>
# include <libetc.h>
# include <stdio.h>
// Precalculated sin/cos values
//~ #include "psin.c"
//~ #include "pcos.c"
# include "atan.c"
// Sample vector model
# include "coridor.c"
//~ #include "gnd.c"
# define VMODE 0
# define SCREENXRES 320
# define SCREENYRES 240
# define CENTERX SCREENXRES / 2
# define CENTERY SCREENYRES / 2
# define OTLEN 256 // Maximum number of OT entries
# define PRIMBUFFLEN 2260 * sizeof(POLY_GT3) // Maximum number of POLY_GT3 primitives
// atantable
# define SWAP(a,b,c) {(c)=(a); (a)=(b); (b)=(c);} // swap(x, y, buffer)
2021-02-04 15:31:04 +01:00
// dotproduct of two vectors
# define dotProduct(v0, v1) \
( v0 ) . vx * ( v1 ) . vx + \
( v0 ) . vy * ( v1 ) . vy + \
( v0 ) . vz * ( v1 ) . vz
// min value
# define min(a,b) \
( a ) - ( b ) > 0 ? ( b ) : ( a )
// max
# define max(a,b) \
( a ) - ( b ) > 0 ? ( a ) : ( b )
# define subVector(v0, v1) \
( v0 ) . vx - ( v1 ) . vx , \
( v0 ) . vy - ( v1 ) . vy , \
( v0 ) . vz - ( v1 ) . vz
2021-02-03 15:23:20 +01:00
//~ extern ushort rcossin_tbl[];
// Display and draw environments, double buffered
DISPENV disp [ 2 ] ;
DRAWENV draw [ 2 ] ;
u_long ot [ 2 ] [ OTLEN ] = { 0 } ; // Ordering table (contains addresses to primitives)
char primbuff [ 2 ] [ PRIMBUFFLEN ] = { 0 } ; // Primitive list // That's our prim buffer
//~ int primcnt=0; // Primitive counter
char * nextpri = primbuff [ 0 ] ; // Primitive counter
char db = 0 ; // Current buffer counter
CVECTOR BGc = { 50 , 50 , 75 , 0 } ;
VECTOR BKc = { 100 , 100 , 100 , 0 } ;
// Local color matrix
//~ static MATRIX cmat = {
//~ /* light source #0, #1, #2, */
//~ ONE, 0, 0, /* R */
//~ 0, ONE, 0, /* G */
//~ 0, 0, ONE, /* B */
//~ };
//~ // local light matrix : Direction and reach of each light source.
//~ // Each light is aligned with the axis, hence direction is in the same coordinate system as the PSX (Y-axis down)
//~ // One == 4096 is reach/intensity of light source
//~ static MATRIX lgtmat = {
//~ // X Y Z
//~ ONE, 0, 0, // Light 0
//~ 0,0,0, // Light 1
//~ 0,0,0 // Light 2
//~ };
// Light
//~ MATRIX rottrans;
MATRIX rotlgt ;
SVECTOR lgtang = { 0 , 0 , 0 } ;
MATRIX light ;
//~ SVECTOR lgtang = {1024, -512, 1024};
static int m_cosTable [ 512 ] ; // precalc costable
static const unsigned int DC_2PI = 2048 ; // this is from gere : https://github.com/grumpycoders/Balau/blob/master/tests/test-Handles.cc#L20-L102
static const unsigned int DC_PI = 1024 ;
static const unsigned int DC_PI2 = 512 ;
short vs ;
typedef struct {
int x , xv ; // x: current value += xv : new value
int y , yv ; // x,y,z, vx, vy, vz are in PSX units (ONE == 4096)
int z , zv ;
int pan , panv ;
int tilt , tiltv ;
int rol ;
VECTOR pos ;
SVECTOR rot ;
SVECTOR dvs ;
MATRIX mat ;
} CAMERA ;
CAMERA camera = {
0 , 0 ,
0 , 0 ,
0 , 0 ,
0 , 0 ,
0 , 0 ,
0 ,
{ 0 , 0 , 0 } ,
{ 0 , 0 , 0 } ,
{ 0 , 0 , 0 }
} ;
//~ //vertex anim
//~ typedef struct {
//~ int nframes; // number of frames e.g 20
//~ int nvert; // number of vertices e.g 21
//~ SVECTOR data[]; // vertex pos as SVECTORs e.g 20 * 21 SVECTORS
//~ } VANIM;
//Pad
int pressed = 0 ;
// Cam stuff
int camMode = 2 ;
long timeB = 0 ;
u_long triCount = 0 ;
2021-02-03 15:35:51 +01:00
2021-02-03 15:23:20 +01:00
// Prototypes
// Sin/Cos Table
void generateTable ( void ) ;
int ncos ( u_int t ) ;
int nsin ( u_int t ) ;
// Atan table
int patan ( int x , int y ) ;
//sqrt
u_int psqrt ( u_int n ) ;
2021-02-03 15:35:51 +01:00
// PSX setup
2021-02-03 15:23:20 +01:00
void init ( void ) ;
void display ( void ) ;
2021-02-03 15:35:51 +01:00
// Utils
void LoadTexture ( u_long * tim , TIM_IMAGE * tparam ) ;
int cliptest3 ( short * v1 ) ;
int lerp ( int start , int end , int factor ) ; // FIXME : not working as it should
SVECTOR SVlerp ( SVECTOR start , SVECTOR end , int factor ) ; // FIXME
// Camera
2021-02-03 15:23:20 +01:00
void getCameraXZ ( int * x , int * z , int actorX , int actorZ , int angle , int distance ) ;
void applyCamera ( CAMERA * cam ) ;
void setCameraPos ( VECTOR pos , SVECTOR rot ) ;
2021-02-03 15:35:51 +01:00
// Physics
2021-02-03 21:37:18 +01:00
VECTOR getIntCollision ( BODY one , BODY two ) ;
VECTOR getExtCollision ( BODY one , BODY two ) ;
2021-02-04 15:31:04 +01:00
void ResolveCollision ( BODY * one , BODY * two ) ;
2021-02-03 21:37:18 +01:00
2021-02-03 15:35:51 +01:00
void applyAcceleration ( BODY * actor ) ;
2021-02-03 15:23:20 +01:00
void callback ( ) ;
int main ( ) {
// Mesh stuff
int i ;
long t , p , OTz , OTc , Flag , nclip ; // t == vertex count, p == depth cueing interpolation value, OTz == value to create Z-ordered OT, Flag == see LibOver47.pdf, p.143
POLY_GT3 * poly ;
2021-02-03 16:20:34 +01:00
//~ // Poly subdiv
//~ DIVPOLYGON3 div = { 0 };
//~ div.pih = SCREENXRES;
//~ div.piv = SCREENYRES;
2021-02-03 15:23:20 +01:00
2021-02-03 21:37:18 +01:00
//~ CVECTOR outCol ={0,0,0,0};
//~ CVECTOR outCol1 ={0,0,0,0};
//~ CVECTOR outCol2 ={0,0,0,0};
2021-02-03 15:23:20 +01:00
MATRIX Cmatrix = { 0 } ;
init ( ) ;
generateTable ( ) ;
VSyncCallback ( callback ) ;
//~ SetLightMatrix(&LLM);
SetColorMatrix ( & cmat ) ;
SetBackColor ( BKc . vx , BKc . vy , BKc . vz ) ;
//~ SetFarColor(BGc.r, BGc.g, BGc.b);
SetFogNearFar ( 1200 , 1600 , SCREENXRES ) ;
for ( int k = 0 ; k < sizeof ( meshes ) / sizeof ( TMESH * ) ; k + + ) {
LoadTexture ( meshes [ k ] - > tim_data , meshes [ k ] - > tim ) ;
}
// physics
short physics = 1 ;
long time = 0 ;
2021-02-04 15:31:04 +01:00
long dt ;
VECTOR col_lvl , col_sphere = { 0 } ;
2021-02-03 15:23:20 +01:00
// Actor start pos
2021-02-03 21:37:18 +01:00
//~ modelobject_body.position.vx = modelobject_pos.vx = 50;
2021-02-03 16:20:34 +01:00
// Cam stuff
2021-02-03 15:23:20 +01:00
VECTOR posToActor = { 0 , 0 , 0 , 0 } ; // position of camera relative to actor
VECTOR theta = { 0 , 0 , 0 , 0 } ; // rotation angles for the camera to point at actor
2021-02-03 16:20:34 +01:00
int angle = 0 ; //PSX units = 4096 == 360° = 2Pi
int dist = 0 ; //PSX units
2021-02-03 15:23:20 +01:00
int lerping = 0 ;
// Vertex anim
//~ SVECTOR interpCache[5];
SVECTOR a , b , c = { 0 , 0 , 0 , 0 } ;
2021-02-03 16:20:34 +01:00
short timediv = 1 ;
2021-02-03 15:23:20 +01:00
2021-02-03 16:20:34 +01:00
int atime = 0 ;
2021-02-03 15:23:20 +01:00
for ( int k = 0 ; k < sizeof ( meshes ) / sizeof ( meshes [ 0 ] ) ; k + + ) {
triCount + = meshes [ k ] - > tmesh - > len ;
}
// Main loop
while ( 1 ) {
//~ timeB = time;
time + + ;
timediv = 2 ;
if ( time % timediv = = 0 ) {
atime + + ;
}
2021-02-03 16:20:34 +01:00
2021-02-03 15:23:20 +01:00
//~ timediv = 1;
2021-02-04 15:31:04 +01:00
2021-02-03 15:23:20 +01:00
//~ // Physics
//~ if (time%2 == 0){
2021-02-03 16:20:34 +01:00
// using libgte ratan (slower)
2021-02-03 15:23:20 +01:00
//~ theta.vy = -ratan2(posToActor.vx, posToActor.vz) ;
//~ theta.vx = 1024 - ratan2(dist, posToActor.vy);
2021-02-03 16:20:34 +01:00
// using atantable (faster)
2021-02-03 15:23:20 +01:00
theta . vy = patan ( posToActor . vx , posToActor . vz ) / 16 - 1024 ;
theta . vx = patan ( dist , posToActor . vy ) / 16 ;
if ( camMode ! = 2 ) {
2021-02-03 16:20:34 +01:00
2021-02-03 15:23:20 +01:00
camera . rot . vy = theta . vy ;
// using csin/ccos, no need for theta
2021-02-03 16:20:34 +01:00
//~ camera.rot.vy = angle;
2021-02-03 15:23:20 +01:00
camera . rot . vx = theta . vx ;
}
if ( camMode ! = 4 ) {
lerping = 0 ;
}
if ( camMode = = 0 ) { // Camera follows actor with lerp for rotations
dist = 150 ;
camera . pos . vx = - ( camera . x / ONE ) ;
//~ camera.pos.vy = -(camera.y/ONE);
camera . pos . vz = - ( camera . z / ONE ) ;
getCameraXZ ( & camera . x , & camera . z , modelobject_pos . vx , modelobject_pos . vz , angle , dist ) ;
2021-02-03 16:20:34 +01:00
2021-02-03 15:23:20 +01:00
angle + = lerp ( camera . rot . vy , modelobject_rot . vy , 128 ) ;
}
if ( camMode = = 1 ) { // mode 1 : Camera rotates continuously
dist = 150 ;
camera . pos . vx = - ( camera . x / ONE ) ;
//~ camera.pos.vy = -(camera.y/ONE);
camera . pos . vz = - ( camera . z / ONE ) ;
getCameraXZ ( & camera . x , & camera . z , modelobject_pos . vx , modelobject_pos . vz , angle , dist ) ;
angle + = 10 ;
}
if ( camMode = = 3 ) { // mode 3 : Fixed Camera with actor tracking
2021-02-03 16:20:34 +01:00
// Using libgte sqrt ( slower)
2021-02-03 15:23:20 +01:00
//~ dist = SquareRoot0( (posToActor.vx * posToActor.vx ) + (posToActor.vz * posToActor.vz) );
2021-02-03 16:20:34 +01:00
// Using precalc sqrt
2021-02-03 15:23:20 +01:00
dist = psqrt ( ( posToActor . vx * posToActor . vx ) + ( posToActor . vz * posToActor . vz ) ) ;
camera . pos . vx = 290 ;
camera . pos . vz = 100 ;
camera . pos . vy = 180 ;
}
if ( camMode = = 2 ) { // mode 2 : Fixed Camera
setCameraPos ( camStartPos . pos , camStartPos . rot ) ;
}
if ( camMode = = 4 ) { // Flyby mode from camStart to camEnd
if ( ! lerping ) {
// Set cam start position
camera . pos . vx = camPath . points [ camPath . cursor ] . vx ;
camera . pos . vy = camPath . points [ camPath . cursor ] . vy ;
camera . pos . vz = camPath . points [ camPath . cursor ] . vz ;
lerping = 1 ;
}
2021-02-03 16:20:34 +01:00
2021-02-03 15:23:20 +01:00
// Pre calculated sqrt ( see psqrt() )
dist = psqrt ( ( posToActor . vx * posToActor . vx ) + ( posToActor . vz * posToActor . vz ) ) ;
short r = camPath . points [ camPath . cursor + 1 ] . vx - camera . pos . vx ;
short s = camPath . points [ camPath . cursor + 1 ] . vy - camera . pos . vy ;
short t = camPath . points [ camPath . cursor + 1 ] . vz - camera . pos . vz ;
2021-02-03 16:20:34 +01:00
// FIXME : the lerp function is incorrect
2021-02-03 15:23:20 +01:00
//~ camera.pos.vx += lerp(camPath.points[camPath.cursor].vx, camPath.points[camPath.cursor+1].vx, 64);
//~ camera.pos.vy += lerp(camPath.points[camPath.cursor].vy, camPath.points[camPath.cursor+1].vy, 64);
//~ camera.pos.vz += lerp(camPath.points[camPath.cursor].vz, camPath.points[camPath.cursor+1].vz, 64);
2021-02-03 16:20:34 +01:00
// easeOut
2021-02-03 15:23:20 +01:00
camera . pos . vx + = lerp ( camera . pos . vx , camPath . points [ camPath . cursor + 1 ] . vx , 128 ) ;
camera . pos . vy + = lerp ( camera . pos . vy , camPath . points [ camPath . cursor + 1 ] . vy , 128 ) ;
camera . pos . vz + = lerp ( camera . pos . vz , camPath . points [ camPath . cursor + 1 ] . vz , 128 ) ;
//~ if ( camera.pos.vx <= camPath.points[camPath.cursor+1].vx ||
//~ camera.pos.vy >= camPath.points[camPath.cursor+1].vy ||
//~ camera.pos.vz <= camPath.points[camPath.cursor+1].vz){
//~ camPath.cursor ++;
//~ }
2021-02-03 16:20:34 +01:00
2021-02-03 15:23:20 +01:00
if ( camera . pos . vx + r = = camPath . points [ camPath . cursor + 1 ] . vx & &
camera . pos . vy + s = = camPath . points [ camPath . cursor + 1 ] . vy & &
camera . pos . vz + t = = camPath . points [ camPath . cursor + 1 ] . vz ) {
camPath . cursor + + ;
}
if ( camPath . cursor = = camPath . len - 1 ) {
lerping = 0 ;
camPath . cursor = 0 ;
}
}
//~ dt = time/180+1 - time/180;
if ( physics ) {
2021-02-03 21:37:18 +01:00
if ( time % 1 = = 0 ) {
2021-02-03 15:23:20 +01:00
for ( int k = 0 ; k < sizeof ( meshes ) / sizeof ( meshes [ 0 ] ) ; k + + ) {
if ( * meshes [ k ] - > isRigidBody = = 1 ) {
2021-02-03 15:35:51 +01:00
applyAcceleration ( meshes [ k ] - > body ) ;
2021-02-03 15:23:20 +01:00
2021-02-04 15:31:04 +01:00
2021-02-03 21:37:18 +01:00
//~ VECTOR col_lvl, col_sphere = {0};
2021-02-03 15:23:20 +01:00
2021-02-03 16:20:34 +01:00
// Get col with level ( modelgnd_body )
2021-02-03 21:37:18 +01:00
col_lvl = getIntCollision ( * meshes [ k ] - > body , modelgnd_body ) ;
col_sphere = getExtCollision ( modelobject_body , modelSphere_body ) ;
2021-02-03 16:20:34 +01:00
// If !col, keep moving
2021-02-03 15:23:20 +01:00
2021-02-03 21:37:18 +01:00
if ( ! col_lvl . vx ) { meshes [ k ] - > pos - > vx = meshes [ k ] - > body - > position . vx ; }
2021-02-03 15:23:20 +01:00
2021-02-03 21:37:18 +01:00
if ( ! col_lvl . vy ) { meshes [ k ] - > pos - > vy = meshes [ k ] - > body - > position . vy ; } // FIXME : Why the 15px offset ?
2021-02-03 15:23:20 +01:00
2021-02-03 21:37:18 +01:00
if ( ! col_lvl . vz ) { meshes [ k ] - > pos - > vz = meshes [ k ] - > body - > position . vz ; }
2021-02-03 16:20:34 +01:00
// If col with wall, change direction
2021-02-03 15:23:20 +01:00
2021-02-03 21:37:18 +01:00
if ( col_lvl . vx ) { meshes [ k ] - > body - > gForce . vx * = - 1 ; }
2021-02-03 15:23:20 +01:00
2021-02-03 21:37:18 +01:00
if ( col_lvl . vy ) { meshes [ k ] - > body - > gForce . vy * = - 1 ; }
2021-02-03 15:23:20 +01:00
2021-02-03 21:37:18 +01:00
if ( col_lvl . vz ) { meshes [ k ] - > body - > gForce . vz * = - 1 ; }
2021-02-03 15:23:20 +01:00
2021-02-03 16:20:34 +01:00
// If col, reset velocity
2021-02-03 21:37:18 +01:00
if ( col_lvl . vx | |
col_lvl . vy | |
col_lvl . vz
2021-02-03 15:23:20 +01:00
) {
2021-02-04 15:31:04 +01:00
//~ meshes[k]->body->velocity.vy = meshes[k]->body->velocity.vx = meshes[k]->body->velocity.vz = 0;
//~ meshes[k]->body->velocity.vy = meshes[k]->body->velocity.vz = 0;
2021-02-03 15:23:20 +01:00
}
2021-02-03 21:37:18 +01:00
2021-02-04 15:31:04 +01:00
if ( col_sphere . vx ) { meshes [ k ] - > body - > gForce . vx * = - 1 ; modelSphere_body . gForce . vx = - meshes [ k ] - > body - > gForce . vx / 4 ; //~ ResolveCollision(&modelobject_body, &modelSphere_body);
}
2021-02-03 21:37:18 +01:00
if ( col_sphere . vz ) { meshes [ k ] - > body - > gForce . vz * = - 1 ; }
//~ if ( col_sphere.vy ) { meshes[k]->body->gForce.vy *= -1; }
2021-02-04 15:31:04 +01:00
//~ if (modelSphere_body.gForce.vx){modelSphere_body.gForce.vx -= 5;}
meshes [ k ] - > body - > position . vx = meshes [ k ] - > pos - > vx ;
meshes [ k ] - > body - > position . vy = meshes [ k ] - > pos - > vy ;
meshes [ k ] - > body - > position . vz = meshes [ k ] - > pos - > vz ;
2021-02-03 21:37:18 +01:00
2021-02-03 15:23:20 +01:00
}
}
}
}
// Camera setup
// position of cam relative to actor
posToActor . vx = modelobject_pos . vx + camera . pos . vx ;
posToActor . vz = modelobject_pos . vz + camera . pos . vz ;
posToActor . vy = modelobject_pos . vy + camera . pos . vy ;
// find dist between actor and cam
//~ dist = csqrt((posToActor.vx * posToActor.vx * 4096) + (posToActor.vz * posToActor.vz * 4096));
//~ dist = SquareRoot0( (posToActor.vx * posToActor.vx ) + (posToActor.vz * posToActor.vz) );
// find angles between cam and actor
//~ theta.vy = ratan2(posToActor.vx, posToActor.vz);
//~ theta.vx = 1024 - ratan2(dist, posToActor.vy);
//~ camera.rot.vy = - theta.vy;
// using csin/ccos, no need for theta
// camera.rot.vy = angle;
//~ camera.rot.vx = theta.vx;
//~ applyCamera(&camera);
// Clear the current OT
ClearOTagR ( ot [ db ] , OTLEN ) ;
for ( int k = 0 ; k < sizeof ( meshes ) / sizeof ( meshes [ 0 ] ) ; k + + ) {
// Render the sample vector model
t = 0 ;
2021-02-03 16:20:34 +01:00
// If rigidbdy, apply rot/transform matrix
2021-02-03 15:23:20 +01:00
if ( * meshes [ k ] - > isRigidBody ) {
2021-02-03 16:20:34 +01:00
//~ PushMatrix(); // Push current matrix on the stack (real slow -> dma transfer )
2021-02-03 15:23:20 +01:00
2021-02-03 16:20:34 +01:00
RotMatrix_gte ( meshes [ k ] - > rot , meshes [ k ] - > mat ) ; // Apply rotation matrix
2021-02-03 21:37:18 +01:00
2021-02-03 16:20:34 +01:00
TransMatrix ( meshes [ k ] - > mat , meshes [ k ] - > pos ) ; // Apply translation matrix
2021-02-03 15:23:20 +01:00
2021-02-03 16:20:34 +01:00
CompMatrix ( & camera . mat , meshes [ k ] - > mat , meshes [ k ] - > mat ) ; // Was using &PolyMatrix instead of meshes[k]->mat
2021-02-03 15:23:20 +01:00
2021-02-03 16:20:34 +01:00
SetRotMatrix ( meshes [ k ] - > mat ) ; // Set default rotation matrix - Was using &PolyMatrix instead of meshes[k]->mat
SetTransMatrix ( meshes [ k ] - > mat ) ; // Was using &PolyMatrix instead of meshes[k]->mat
2021-02-03 15:23:20 +01:00
}
// modelCube is a TMESH, len member == # vertices, but here it's # of triangle... So, for each tri * 3 vertices ...
for ( i = 0 ; i < ( meshes [ k ] - > tmesh - > len * 3 ) ; i + = 3 ) {
poly = ( POLY_GT3 * ) nextpri ;
SetPolyGT3 ( poly ) ;
// Can use ?
//~ RotMeshPrimS_GCT3();
if ( * meshes [ k ] - > isPrism ) {
2021-02-03 16:20:34 +01:00
// Use current DRAWENV clip as TPAGE
2021-02-03 15:23:20 +01:00
( ( POLY_GT3 * ) poly ) - > tpage = getTPage ( meshes [ k ] - > tim - > mode & 0x3 , 0 ,
2021-02-03 16:20:34 +01:00
draw [ db ] . clip . x ,
draw [ db ] . clip . y
2021-02-03 15:23:20 +01:00
) ;
2021-02-03 16:20:34 +01:00
// Use projected coordinates (results from RotAverage...) as UV coords and clamp them to 0-255,0-224
2021-02-03 15:23:20 +01:00
setUV3 ( poly , ( poly - > x0 < 0 ? 0 : poly - > x0 > 255 ? 255 : poly - > x0 ) ,
( poly - > y0 < 0 ? 0 : poly - > y0 > 224 ? 224 : poly - > y0 ) ,
( poly - > x1 < 0 ? 0 : poly - > x1 > 255 ? 255 : poly - > x1 ) ,
( poly - > y1 < 0 ? 0 : poly - > y1 > 224 ? 224 : poly - > y1 ) ,
( poly - > x2 < 0 ? 0 : poly - > x2 > 255 ? 255 : poly - > x2 ) ,
( poly - > y2 < 0 ? 0 : poly - > y2 > 224 ? 224 : poly - > y2 )
) ;
} else {
2021-02-03 16:20:34 +01:00
// Use regular TPAGE
2021-02-03 15:23:20 +01:00
( ( POLY_GT3 * ) poly ) - > tpage = getTPage ( meshes [ k ] - > tim - > mode & 0x3 , 0 ,
meshes [ k ] - > tim - > prect - > x ,
meshes [ k ] - > tim - > prect - > y
) ;
2021-02-03 16:20:34 +01:00
// Use model UV coordinates
2021-02-03 15:23:20 +01:00
setUV3 ( poly , meshes [ k ] - > tmesh - > u [ i ] . vx , meshes [ k ] - > tmesh - > u [ i ] . vy + meshes [ k ] - > tim - > prect - > y ,
meshes [ k ] - > tmesh - > u [ i + 1 ] . vx , meshes [ k ] - > tmesh - > u [ i + 1 ] . vy + meshes [ k ] - > tim - > prect - > y ,
meshes [ k ] - > tmesh - > u [ i + 2 ] . vx , meshes [ k ] - > tmesh - > u [ i + 2 ] . vy + meshes [ k ] - > tim - > prect - > y ) ;
}
2021-02-03 16:20:34 +01:00
// If Vertex Anim flag
2021-02-03 15:23:20 +01:00
if ( * meshes [ k ] - > isAnim ) {
2021-02-03 16:20:34 +01:00
// FIXME : SLERP VERTEX ANIM
2021-02-03 15:23:20 +01:00
//~ SVECTOR a,b,c = {0,0,0,0};
//~ for (int f = 0; f < 5; f++){
//~ interpCache[f] = SVlerp( (SVECTOR) meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t]], (SVECTOR) meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t]], 2048);
//~ interpCache[f+1] = SVlerp( (SVECTOR) meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t]], (SVECTOR) meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t]], 2048);
//~ interpCache[f+2] = SVlerp( (SVECTOR) meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t]], (SVECTOR) meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t]], 2048);
//~ }
//~ SVECTOR start = meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t]];
//~ SVECTOR end = meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t]];
//~ if (a.vx != 0 && b.vx != 0 && c.vx != 0){
//~ SVECTOR d,e,f;
//~ d = SVlerp( (SVECTOR) a, (SVECTOR) meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t]], 2048);
//~ e = SVlerp( (SVECTOR) b, (SVECTOR) meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t+1]], 2048);
//~ f = SVlerp( (SVECTOR) c, (SVECTOR) meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t+2]], 2048);
//~ addVector( &a , &d );
//~ addVector( &b , &e );
//~ addVector( &c , &f );
//~ } else {
//~ a = (SVECTOR) meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t]];
//~ b = (SVECTOR) meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t+1]];
//~ c = (SVECTOR) meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t+2]];
//~ }
//~ a.vx = lerp(start.vx, end.vx, 2048);
//~ a.vy = lerp(meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t]].vy, meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t]].vy, 2048);
//~ a.vz = lerp(meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t]].vz, meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t]].vz, 2048);
//~ b = meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t+1]];
//~ c = meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t+2]];
//~ SVlerp(meshes[k]->anim->data[ 0 * modelCylindre_anim.nvert + meshes[k]->index[t]], meshes[k]->anim->data[ 10 * modelCylindre_anim.nvert + meshes[k]->index[t]],64, a);
//~ SVlerp(meshes[k]->anim->data[ 0 * modelCylindre_anim.nvert + meshes[k]->index[t+1]], meshes[k]->anim->data[ 10 * modelCylindre_anim.nvert + meshes[k]->index[t+1]],64, b);
//~ SVlerp(meshes[k]->anim->data[ 0 * modelCylindre_anim.nvert + meshes[k]->index[t+2]], meshes[k]->anim->data[ 10 * modelCylindre_anim.nvert + meshes[k]->index[t+2]],64, c);
//~ FntPrint("%d %d %d\n", meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t]].vz, meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t]].vz, a.vz);
//~ FntPrint("%d %d %d\n", c.vx, c.vy, c.vz);
//~ FntPrint("%d %d %d\n", a.vx, b.vx, c.vx);
2021-02-03 16:20:34 +01:00
// Rotate, translate, and project the vectors and output the results into a primitive
//~ OTz = RotTransPers(&meshes[k]->tmesh->v[meshes[k]->index[t]] , (long*)&poly->x0, meshes[k]->p, &Flag);
//~ OTz += RotTransPers(&meshes[k]->tmesh->v[meshes[k]->index[t+1]], (long*)&poly->x1, meshes[k]->p, &Flag);
//~ OTz += RotTransPers(&meshes[k]->tmesh->v[meshes[k]->index[t+2]], (long*)&poly->x2, meshes[k]->p, &Flag);
// Use anim vertex's positions
OTz = RotAverage3 (
& meshes [ k ] - > anim - > data [ atime % 19 * modelCylindre_anim . nvert + meshes [ k ] - > index [ t ] ] ,
& meshes [ k ] - > anim - > data [ atime % 19 * modelCylindre_anim . nvert + meshes [ k ] - > index [ t + 1 ] ] ,
& meshes [ k ] - > anim - > data [ atime % 19 * modelCylindre_anim . nvert + meshes [ k ] - > index [ t + 2 ] ] ,
( long * ) & poly - > x0 , ( long * ) & poly - > x1 , ( long * ) & poly - > x2 ,
meshes [ k ] - > p ,
& Flag
) ;
2021-02-03 15:23:20 +01:00
} else {
2021-02-03 21:37:18 +01:00
// Use model's regular vertex pos
OTz = RotAverage3 (
2021-02-03 15:23:20 +01:00
& meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t ] ] ,
& meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t + 1 ] ] ,
& meshes [ k ] - > tmesh - > v [ meshes [ k ] - > index [ t + 2 ] ] ,
( long * ) & poly - > x0 , ( long * ) & poly - > x1 , ( long * ) & poly - > x2 ,
meshes [ k ] - > p ,
& Flag
) ;
}
2021-02-03 16:20:34 +01:00
// FIXME : Polygon subdiv
2021-02-03 15:23:20 +01:00
//~ OTc = OTz>>4;
//~ if (OTc < 15) {
//~ if (OTc > 5) div.ndiv = 1; else div.ndiv = 2;
//~ DivideGT3(
//~ // Vertex coord
//~ &meshes[k]->tmesh->v[meshes[k]->index[t]],
//~ &meshes[k]->tmesh->v[meshes[k]->index[t+1]],
//~ &meshes[k]->tmesh->v[meshes[k]->index[t+2]],
//~ // UV coord
//~ meshes[k]->tmesh->u[i],
//~ meshes[k]->tmesh->u[i+1],
//~ meshes[k]->tmesh->u[i+2],
//~ // Color
//~ meshes[k]->tmesh->c[i],
//~ meshes[k]->tmesh->c[i+1],
//~ meshes[k]->tmesh->c[i+2],
//~ // Gpu packet
//~ poly,
//~ &ot[db][OTz],
//~ &div);
//~ // Increment primitive list pointer
//~ nextpri += ( (sizeof(POLY_GT4) + 2) / 3 ) * (( 1 << ( div.ndiv )) << ( div.ndiv ));
//NumPrims += ((1<<(div.ndiv))<<(div.ndiv));
//~ }
2021-02-03 16:20:34 +01:00
// Interpolate a primary color vector and far color
// If vertex anim has updated normals
2021-02-03 15:23:20 +01:00
//~ if (*meshes[k]->isAnim){
//~ NormalColorDpq(&meshes[k]->anim->normals[ atime%19 * modelCylindre_anim.nvert + meshes[k]->index[t]], &meshes[k]->tmesh->c[meshes[k]->index[t]], *meshes[k]->p, &outCol);
//~ NormalColorDpq(&meshes[k]->anim->normals[ atime%19 * modelCylindre_anim.nvert + meshes[k]->index[t+1]], &meshes[k]->tmesh->c[meshes[k]->index[t+1]], *meshes[k]->p, &outCol1);
//~ NormalColorDpq(&meshes[k]->anim->normals[ atime%19 * modelCylindre_anim.nvert + meshes[k]->index[t+2]], &meshes[k]->tmesh->c[meshes[k]->index[t+2]], *meshes[k]->p, &outCol2);
//~ } else {
2021-02-03 21:37:18 +01:00
CVECTOR outCol = { 0 , 0 , 0 , 0 } ;
CVECTOR outCol1 = { 0 , 0 , 0 , 0 } ;
CVECTOR outCol2 = { 0 , 0 , 0 , 0 } ;
2021-02-03 15:23:20 +01:00
NormalColorDpq ( & meshes [ k ] - > tmesh - > n [ meshes [ k ] - > index [ t ] ] , & meshes [ k ] - > tmesh - > c [ meshes [ k ] - > index [ t ] ] , * meshes [ k ] - > p , & outCol ) ;
NormalColorDpq ( & meshes [ k ] - > tmesh - > n [ meshes [ k ] - > index [ t + 1 ] ] , & meshes [ k ] - > tmesh - > c [ meshes [ k ] - > index [ t + 1 ] ] , * meshes [ k ] - > p , & outCol1 ) ;
NormalColorDpq ( & meshes [ k ] - > tmesh - > n [ meshes [ k ] - > index [ t + 2 ] ] , & meshes [ k ] - > tmesh - > c [ meshes [ k ] - > index [ t + 2 ] ] , * meshes [ k ] - > p , & outCol2 ) ;
//~ }
2021-02-03 16:20:34 +01:00
// Other methods
//~ NormalColorDpq3(&meshes[k]->tmesh->n[i],
//~ &meshes[k]->tmesh->n[i+1],
//~ &meshes[k]->tmesh->n[i+2],
//~ &meshes[k]->tmesh->c[i],
//~ *meshes[k]->p,
//~ &outCol,&outCol1,&outCol2
//~ );
2021-02-03 15:23:20 +01:00
//~ DpqColor3(&meshes[k]->tmesh->c[i],
//~ &meshes[k]->tmesh->c[i+1],
//~ &meshes[k]->tmesh->c[i+2],
//~ *meshes[k]->p,
//~ &outCol,&outCol1,&outCol2
//~ );
2021-02-03 16:20:34 +01:00
2021-02-03 15:23:20 +01:00
if ( * meshes [ k ] - > isPrism ) {
2021-02-03 16:20:34 +01:00
// Use un-interpolated (i.e: no light, no fog) colors
setRGB0 ( poly , meshes [ k ] - > tmesh - > c [ i ] . r , meshes [ k ] - > tmesh - > c [ i + 1 ] . g , meshes [ k ] - > tmesh - > c [ i + 2 ] . b ) ;
setRGB1 ( poly , meshes [ k ] - > tmesh - > c [ i + 1 ] . r , meshes [ k ] - > tmesh - > c [ i + 1 ] . g , meshes [ k ] - > tmesh - > c [ i + 1 ] . b ) ;
setRGB2 ( poly , meshes [ k ] - > tmesh - > c [ i + 2 ] . r , meshes [ k ] - > tmesh - > c [ i + 2 ] . g , meshes [ k ] - > tmesh - > c [ i + 2 ] . b ) ;
2021-02-03 15:23:20 +01:00
} else {
setRGB0 ( poly , outCol . r , outCol . g , outCol . b ) ;
setRGB1 ( poly , outCol1 . r , outCol1 . g , outCol1 . b ) ;
setRGB2 ( poly , outCol2 . r , outCol2 . g , outCol2 . b ) ;
}
// Sort the primitive into the OT
//~ OTz /= 3;
2021-02-03 16:20:34 +01:00
2021-02-03 15:23:20 +01:00
// cliptest3((short *)&meshes[k]->tmesh->v[meshes[k]->index[t]])
//~ if ((OTz > 0) && (OTz < OTLEN) && (*meshes[k]->p < 2048)){
2021-02-03 21:37:18 +01:00
if ( ( OTz > 0 ) & & ( OTz < OTLEN ) & & ( * meshes [ k ] - > p < 4096 ) ) {
AddPrim ( & ot [ db ] [ OTz - 2 ] , poly ) ; // OTz - 2
}
nextpri + = sizeof ( POLY_GT3 ) ;
2021-02-03 15:23:20 +01:00
t + = 3 ;
//~ if (*meshes[k]->isRigidBody){
2021-02-03 16:20:34 +01:00
//~ PopMatrix(); // Pull previous matrix from stack (slow)
//~ }
2021-02-03 15:23:20 +01:00
}
2021-02-03 16:20:34 +01:00
// Find and apply light rotation matrix
2021-02-03 15:23:20 +01:00
RotMatrix ( & lgtang , & rotlgt ) ;
MulMatrix0 ( & lgtmat , & rotlgt , & light ) ;
SetLightMatrix ( & light ) ;
2021-02-03 16:20:34 +01:00
applyCamera ( & camera ) ;
2021-02-03 15:23:20 +01:00
}
2021-02-04 15:31:04 +01:00
//~ FntPrint("ColSphere: %d\n", (modelobject_body.position.vy + modelobject_body.max.vy) - (modelSphere_body.position.vy + modelSphere_body.min.vy) );
//~ FntPrint("ColSphere: %d\n", (modelSphere_body.position.vy + modelSphere_body.max.vy) - (modelobject_body.position.vy + modelobject_body.min.vy) );
//~ FntPrint("Col %d\n", col_sphere.vy );
FntPrint ( " Obj: %d,%d,%d \n " , modelobject_body . velocity . vx , modelobject_body . velocity . vy , modelobject_body . velocity . vz ) ;
FntPrint ( " Sph: %d,%d,%d \n " , modelSphere_body . velocity . vx , modelSphere_body . velocity . vy , modelSphere_body . velocity . vz ) ;
//~ FntPrint("%d, %d\n",modelobject_body.position.vx, modelobject_pos.vx);
2021-02-03 21:37:18 +01:00
//~ FntPrint("Time : %d %d dt :%d\n",time, atime, dt);
//~ FntPrint("Tricount: %d OTz: %d\nOTc: %d, p: %d\n",triCount, OTz, OTc, *meshes[2]->p);
2021-02-03 15:23:20 +01:00
2021-02-03 21:37:18 +01:00
//~ FntPrint("Sphr : %4d %4d %4d\n", modelSphere_body.gForce.vx, modelSphere_body.gForce.vy, modelSphere_body.gForce.vz);
2021-02-03 15:23:20 +01:00
2021-02-03 21:37:18 +01:00
//~ FntPrint("isPrism: %d\n", *meshobject.isPrism);
2021-02-03 15:23:20 +01:00
2021-02-03 21:37:18 +01:00
//~ FntPrint("L1: %d %d %d\n", light.m[0][0],light.m[0][1],light.m[0][2]);
//~ FntPrint("L2: %d %d %d\n", light.m[1][0],light.m[1][1],light.m[1][2]);
//~ FntPrint("L3: %d %d %d\n", light.m[2][0],light.m[2][1],light.m[2][2]);
2021-02-03 16:20:34 +01:00
2021-02-03 15:23:20 +01:00
FntFlush ( - 1 ) ;
display ( ) ;
//~ frame = VSync(-1);
}
return 0 ;
}
void init ( ) {
// Reset the GPU before doing anything and the controller
PadInit ( 0 ) ;
ResetGraph ( 0 ) ;
// Initialize and setup the GTE
InitGeom ( ) ;
SetGeomOffset ( CENTERX , CENTERY ) ; // x, y offset
SetGeomScreen ( CENTERX ) ; // Distance between eye and screen
// Set the display and draw environments
SetDefDispEnv ( & disp [ 0 ] , 0 , 0 , SCREENXRES , SCREENYRES ) ;
SetDefDispEnv ( & disp [ 1 ] , 0 , SCREENYRES , SCREENXRES , SCREENYRES ) ;
SetDefDrawEnv ( & draw [ 0 ] , 0 , SCREENYRES , SCREENXRES , SCREENYRES ) ;
SetDefDrawEnv ( & draw [ 1 ] , 0 , 0 , SCREENXRES , SCREENYRES ) ;
if ( VMODE )
{
SetVideoMode ( MODE_PAL ) ;
disp [ 0 ] . screen . y + = 8 ;
disp [ 1 ] . screen . y + = 8 ;
}
setRGB0 ( & draw [ 0 ] , BGc . r , BGc . g , BGc . b ) ;
setRGB0 ( & draw [ 1 ] , BGc . r , BGc . g , BGc . b ) ;
draw [ 0 ] . isbg = 1 ;
draw [ 1 ] . isbg = 1 ;
PutDispEnv ( & disp [ db ] ) ;
PutDrawEnv ( & draw [ db ] ) ;
// Init font system
FntLoad ( 960 , 0 ) ;
FntOpen ( 16 , 180 , 240 , 96 , 0 , 512 ) ;
}
void display ( void ) {
DrawSync ( 0 ) ;
vs = VSync ( 0 ) ;
PutDispEnv ( & disp [ db ] ) ;
PutDrawEnv ( & draw [ db ] ) ;
SetDispMask ( 1 ) ;
DrawOTag ( ot [ db ] + OTLEN - 1 ) ;
db = ! db ;
nextpri = primbuff [ db ] ;
}
// Nic's function
void getCameraXZ ( int * x , int * z , int actorX , int actorZ , int angle , int distance ) {
// Using Nic's Costable : https://github.com/grumpycoders/Balau/blob/master/tests/test-Handles.cc#L20-L102
// https://godbolt.org/z/q6cMcj
* x = ( actorX * ONE ) + ( distance * nsin ( angle ) ) ;
* z = ( actorZ * ONE ) - ( distance * ncos ( angle ) ) ;
//~ *x = (actorX * ONE) + (distance * csin(angle));
//~ *z = (actorZ * ONE) - (distance * ccos(angle)); // Z is pointing away from the eye
// @soapy https://discord.com/channels/642647820683444236/663664210525290507/797188403748929547
//~ *x = (actorX * ONE) + (distance * rcossin_tbl[(angle & 0xFFFU) * 2]);
//~ *z = (actorZ * ONE) - (distance * rcossin_tbl[(angle & 0xFFFU) * 2 + 1]); // Z is pointing away from the eye
// Using precalculated psin and pcos
//~ *x = (actorX * ONE) + (distance * psin[angle]);
//~ *z = (actorZ * ONE) - (distance * pcos[angle]); // Z is pointing away from the eye
}
// @Will : you might want to use sin/cos to move the camera in a circle but you could do that by moving it along it’ s tangent and then clamping the distance
void applyCamera ( CAMERA * cam ) {
VECTOR vec ; // Vector that holds the output values of the following instructions
RotMatrix_gte ( & cam - > rot , & cam - > mat ) ; // Convert rotation angle in psx units (360° == 4096) to rotation matrix)
ApplyMatrixLV ( & cam - > mat , & cam - > pos , & vec ) ; // Multiply matrix by vector pos and output to vec
TransMatrix ( & cam - > mat , & vec ) ; // Apply transform vector
SetRotMatrix ( & cam - > mat ) ; // Set Rotation matrix
SetTransMatrix ( & cam - > mat ) ; // Set Transform matrix
}
void setCameraPos ( VECTOR pos , SVECTOR rot ) {
camera . pos = pos ;
camera . rot = rot ;
} ;
void LoadTexture ( u_long * tim , TIM_IMAGE * tparam ) { // This part is from Lameguy64's tutorial series : lameguy64.net/svn/pstutorials/chapter1/3-textures.html login/pw: annoyingmous
OpenTIM ( tim ) ; // Open the tim binary data, feed it the address of the data in memory
ReadTIM ( tparam ) ; // This read the header of the TIM data and sets the corresponding members of the TIM_IMAGE structure
LoadImage ( tparam - > prect , tparam - > paddr ) ; // Transfer the data from memory to VRAM at position prect.x, prect.y
DrawSync ( 0 ) ; // Wait for the drawing to end
if ( tparam - > mode & 0x8 ) { // check 4th bit // If 4th bit == 1, TIM has a CLUT
LoadImage ( tparam - > crect , tparam - > caddr ) ; // Load it to VRAM at position crect.x, crect.y
DrawSync ( 0 ) ; // Wait for drawing to end
}
}
int lerp ( int start , int end , int factor ) {
// lerp interpolated cam movement
// InBetween = Value 1 + ( ( Value2 - Value1 ) * lerpValue ) ;
// lerpValue should be a float between 0 and 1.
// This'll have to be a fixed point value between 0-4096
// easeOut
//~ return ( ( start ) + ( end - start ) * factor ) / 4096;
// easeIn
return ( ( start ) + ( end - start ) * factor ) / 4096 ;
// kinda linear
//~ return (( start ) + ( end - start )) * factor / 4096;
}
SVECTOR SVlerp ( SVECTOR start , SVECTOR end , int factor ) {
SVECTOR output = { 0 , 0 , 0 , 0 } ;
output . vx = lerp ( start . vx , end . vx , factor ) ;
output . vy = lerp ( start . vy , end . vy , factor ) ;
output . vz = lerp ( start . vz , end . vz , factor ) ;
return output ;
}
2021-02-03 21:37:18 +01:00
VECTOR getIntCollision ( BODY one , BODY two ) {
2021-02-03 15:23:20 +01:00
VECTOR d1 , d2 , col ;
d1 . vx = ( one . position . vx - one . max . vx ) - ( two . position . vx + two . min . vx ) ;
2021-02-03 21:37:18 +01:00
d1 . vy = ( one . position . vy + one . min . vy ) - ( two . position . vy + two . min . vy ) ;
2021-02-03 15:23:20 +01:00
d1 . vz = ( one . position . vz - one . max . vz ) - ( two . position . vz + two . min . vz ) ;
d2 . vx = ( two . position . vx + two . max . vx ) - ( one . position . vx + one . max . vx ) ;
d2 . vy = ( two . position . vy + two . max . vy ) - ( one . position . vy + one . max . vy ) ;
d2 . vz = ( two . position . vz + two . max . vz ) - ( one . position . vz + one . max . vz ) ;
2021-02-03 21:37:18 +01:00
col . vx = ! ( d1 . vx > 0 & & d2 . vx > 0 ) ;
col . vy = ! ( d1 . vy > 0 & & d2 . vy > 0 ) ;
col . vz = ! ( d1 . vz > 0 & & d2 . vz > 0 ) ;
return col ;
}
VECTOR getExtCollision ( BODY one , BODY two ) {
VECTOR d1 , d2 , col ;
d1 . vx = ( one . position . vx + one . max . vx ) - ( two . position . vx + two . min . vx ) ;
d1 . vy = ( one . position . vy + one . max . vy ) - ( two . position . vy + two . min . vy ) ;
d1 . vz = ( one . position . vz + one . max . vz ) - ( two . position . vz + two . min . vz ) ;
d2 . vx = ( two . position . vx + two . max . vx ) - ( one . position . vx + one . min . vx ) ;
d2 . vy = ( two . position . vy + two . max . vy ) - ( one . position . vy + one . min . vy ) ;
d2 . vz = ( two . position . vz + two . max . vz ) - ( one . position . vz + one . min . vz ) ;
col . vx = d1 . vx > 0 & & d2 . vx > 0 ;
col . vy = d1 . vy > 0 & & d2 . vy > 0 ;
col . vz = d1 . vz > 0 & & d2 . vz > 0 ;
2021-02-03 15:23:20 +01:00
return col ;
}
2021-02-03 15:35:51 +01:00
void applyAcceleration ( BODY * actor ) {
2021-02-04 15:31:04 +01:00
short dt = 1 ;
2021-02-03 15:23:20 +01:00
2021-02-03 15:35:51 +01:00
VECTOR acceleration = { actor - > gForce . vx / actor - > mass , actor - > gForce . vy / actor - > mass , actor - > gForce . vz / actor - > mass } ;
2021-02-04 15:31:04 +01:00
actor - > velocity . vx + = ( acceleration . vx * dt ) ;
actor - > velocity . vy + = ( acceleration . vy * dt ) ;
actor - > velocity . vz + = ( acceleration . vz * dt ) ;
2021-02-03 15:35:51 +01:00
2021-02-04 15:31:04 +01:00
actor - > position . vx + = ( actor - > velocity . vx * dt ) ;
actor - > position . vy + = ( actor - > velocity . vy * dt ) ;
actor - > position . vz + = ( actor - > velocity . vz * dt ) ;
2021-02-03 15:35:51 +01:00
}
2021-02-03 15:23:20 +01:00
2021-02-04 15:31:04 +01:00
//~ // https://gamedevelopment.tutsplus.com/tutorials/how-to-create-a-custom-2d-physics-engine-the-basics-and-impulse-resolution--gamedev-6331
void ResolveCollision ( BODY * one , BODY * two ) {
// Calculate relative velocity
VECTOR rv = { subVector ( two - > velocity , one - > velocity ) } ;
//~ FntPrint("rv: %d, %d, %d\n", rv.vx,rv.vy,rv.vz);
// Collision normal
VECTOR normal = { subVector ( two - > position , one - > position ) } ;
//~ FntPrint("norm: %d, %d, %d\n", normal.vx,normal.vy,normal.vz);
// Calculate relative velocity in terms of the normal direction
long velAlongNormal = dotProduct ( rv , normal ) ;
//~ FntPrint("velN: %d\n", velAlongNormal);
// Do not resolve if velocities are separating
if ( velAlongNormal > 0 )
return ;
// Calculate restitution
long e = min ( one - > restitution , two - > restitution ) ;
//~ FntPrint("e: %d\n", e);
//~ // Calculate impulse scalar
long j = - ( 1 + e ) * velAlongNormal ;
long k = ONE / one - > mass ;
long l = ONE / two - > mass ;
j / = k + l ;
j / = ONE ;
//~ FntPrint("j: %d\n", j);
// Apply impulse
applyVector ( & normal , j , j , j , * = ) ;
VECTOR velOne = normal ;
VECTOR velTwo = normal ;
FntPrint ( " vel1: %d, %d, %d \n " , velOne . vx , velOne . vy , velOne . vz ) ;
FntPrint ( " vel2: %d, %d, %d \n " , velTwo . vx , velTwo . vy , velTwo . vz ) ;
applyVector ( & velOne , k / ONE , k / ONE , k / ONE , * = ) ;
applyVector ( & velTwo , l / ONE , l / ONE , l / ONE , * = ) ;
applyVector ( & one - > velocity , velOne . vx , velOne . vy , velOne . vz , - = ) ;
applyVector ( & two - > velocity , velTwo . vx , velTwo . vy , velTwo . vz , + = ) ;
}
2021-02-03 15:23:20 +01:00
// A few notes on the following code :
int ncos ( unsigned int t ) {
t % = DC_2PI ;
int r ;
if ( t < DC_PI2 ) {
r = m_cosTable [ t ] ;
} else if ( t < DC_PI ) {
r = - m_cosTable [ DC_PI - 1 - t ] ;
} else if ( t < ( DC_PI + DC_PI2 ) ) {
r = - m_cosTable [ t - DC_PI ] ;
} else {
r = m_cosTable [ DC_2PI - 1 - t ] ;
} ;
return r > > 12 ;
} ;
// sin(x) = cos(x - pi / 2)
int nsin ( unsigned int t ) {
t % = DC_2PI ;
if ( t < DC_PI2 ) {
return ncos ( t + DC_2PI - DC_PI2 ) ;
} ;
return ncos ( t - DC_PI2 ) ;
} ;
// f(n) = cos(n * 2pi / 2048) <- 2048 is == DC_2PI value
// f(n) = 2 * f(1) * f(n - 1) - f(n - 2)
void generateTable ( void ) {
m_cosTable [ 0 ] = 16777216 ; // 2^24 * cos(0 * 2pi / 2048) => 2^24 * 1 = 2^24 : here, 2^24 defines the precision we want after the decimal point
static const long long C = 16777137 ; // 2^24 * cos(1 * 2pi / 2048) = C = f(1);
m_cosTable [ 1 ] = C ;
for ( int i = 2 ; i < 512 ; i + + ) {
m_cosTable [ i ] = ( ( C * m_cosTable [ i - 1 ] ) > > 23 ) - m_cosTable [ i - 2 ] ;
m_cosTable [ 511 ] = 0 ;
}
} ;
// https://github.com/Arsunt/TR2Main/blob/411cacb35914c616cb7960c0e677e00c71c7ee88/3dsystem/phd_math.cpp#L432
int patan ( int x , int y ) {
int result ;
int swapBuf ;
int flags = 0 ;
// if either x or y are 0, return 0
if ( x = = 0 & & y = = 0 ) {
return 0 ;
}
if ( x < 0 ) {
flags | = 4 ;
x = - x ;
}
if ( y < 0 ) {
flags | = 2 ;
y = - y ;
}
if ( y > x ) {
flags | = 1 ;
SWAP ( x , y , swapBuf ) ;
}
result = AtanBaseTable [ flags ] + AtanAngleTable [ 0x800 * y / x ] ;
if ( result < 0 ) {
result = - result ;
return result ;
}
}
u_int psqrt ( u_int n ) {
u_int result = 0 ;
u_int base = 0x40000000 ;
u_int basedResult ;
for ( ; base ! = 0 ; base > > = 2 ) {
for ( ; base ! = 0 ; base > > = 2 ) {
basedResult = base + result ;
result > > = 1 ;
if ( basedResult > n ) {
break ;
}
n - = basedResult ;
result | = base ;
}
}
return result ;
}
int cliptest3 ( short * v1 )
{
if ( v1 [ 0 ] < 0 & & v1 [ 2 ] < 0 & & v1 [ 4 ] < 0 ) return 0 ;
if ( v1 [ 1 ] < 0 & & v1 [ 3 ] < 0 & & v1 [ 5 ] < 0 ) return 0 ;
if ( v1 [ 0 ] > SCREENXRES & & v1 [ 2 ] > SCREENXRES & & v1 [ 4 ] > SCREENXRES ) return 0 ;
if ( v1 [ 1 ] > SCREENYRES & & v1 [ 3 ] > SCREENYRES & & v1 [ 5 ] > SCREENYRES ) return 0 ;
return 1 ;
}
void callback ( ) {
int pad = PadRead ( 0 ) ;
if ( pad & PADRright & & ! pressed ) {
if ( camMode < 4 ) {
camMode + = 1 ;
} else {
setCameraPos ( camStartPos . pos , camStartPos . rot ) ;
camPath . cursor = 0 ;
camMode = 0 ;
}
pressed = 1 ;
}
if ( ! ( pad & PADRright ) ) {
pressed = 0 ;
}
if ( pad & PADRdown ) {
lgtang . vy + = 32 ;
//~ lgtang.vx += 32;
}
if ( pad & PADRup ) {
lgtang . vz + = 32 ;
//~ lgtang.vx += 32;
}
//~ RotMatrix(&lgtang, &rotlgt);
//~ MulMatrix(&rotlgt, &rottrans);
if ( pad & PADLdown & & ! pressed ) {
if ( * meshobject . isPrism ) {
* meshobject . isPrism = 0 ;
} else {
* meshobject . isPrism = 1 ;
}
pressed = 1 ;
}
if ( ! pad & PADLdown ) {
pressed = 0 ;
}
}