3dcam-headers/main.c

1773 lines
67 KiB
C

// 3dcam
// With huge help from :
// @NicolasNoble : https://discord.com/channels/642647820683444236/646765703143227394/796876392670429204
// @Lameguy64
// @Impiaa
// @paul
/* PSX screen coordinate system
*
* Z+
* /
* /
* +------X+
* /|
* / |
* / Y+
* eye */
// Blender debug mode
// bpy. app. debug = True
//~ #include <sys/types.h>
//~ #include <libgte.h>
//~ #include <libgpu.h>
//~ #include <libetc.h>
//~ #include <stdio.h>
//~ #include <stdint.h>
//~ #include <stddef.h>
//~ #include "coridor2.h"
#include "psx.h"
#include "math.h"
#include "camera.h"
#include "physics.h"
#include "graphics.h"
#include "space.h"
#include "coridor2.c"
//~ #define VMODE 0
//~ #define SCREENXRES 320
//~ #define SCREENYRES 240
//~ #define CENTERX SCREENXRES/2
//~ #define CENTERY SCREENYRES/2
//~ #define FOV CENTERX // With a FOV of 1/2, camera focal length is ~= 16 mm / 90°
//~ // Lower values mean wider angle
//~ // pixel > cm : used in physics calculations
//~ #define SCALE 4
//~ #define FNT_POS_X 960
//~ #define FNT_POS_Y 256
//~ #define OT2LEN 8
//~ #define OTLEN 256 // Maximum number of OT entries
//~ #define PRIMBUFFLEN 4096 * sizeof(POLY_GT4) // Maximum number of POLY_GT3 primitives
// Display and draw environments, double buffered
DISPENV disp[2];
DRAWENV draw[2];
//~ // OT for BG/FG discrimination
u_long otdisc[2][OT2LEN] = {0};
// Main OT
u_long ot[2][OTLEN] = {0}; // Ordering table (contains addresses to primitives)
char primbuff[2][PRIMBUFFLEN] = {0}; // Primitive list // That's our prim buffer
int primcnt=0; // Primitive counter
char * nextpri = primbuff[0]; // Primitive counter
char db = 0; // Current buffer counter
CVECTOR BGc = {50, 50, 75, 0}; // Far color
VECTOR BKc = {128, 128, 128, 0}; // Back color
// Local color matrix
//~ static MATRIX cmat = {
//~ /* light source #0, #1, #2, */
//~ ONE, 0, 0, /* R */
//~ 0, ONE, 0, /* G */
//~ 0, 0, ONE, /* B */
//~ };
//~ // local light matrix : Direction and reach of each light source.
//~ // Each light is aligned with the axis, hence direction is in the same coordinate system as the PSX (Y-axis down)
//~ // One == 4096 is reach/intensity of light source
//~ static MATRIX lgtmat = {
//~ // X Y Z
//~ ONE, 0, 0, // Light 0
//~ 0,0,0, // Light 1
//~ 0,0,0 // Light 2
//~ };
// Light
//~ MATRIX rottrans;
MATRIX rotlgt;
SVECTOR lgtang = {0, 0, 0};
MATRIX light;
short vs;
CAMERA camera = {0};
// physics
long time = 0;
//~ const int gravity = 10;
int camMode = 2;
//Pad
int pressed = 0;
u_short timer = 0;
// Cam stuff
//~ long timeB = 0;
int lerping = 0;
short curCamAngle = 0;
// Inverted Cam coordinates for Forward Vector calc
VECTOR InvCamPos = {0,0,0,0};
VECTOR fVecActor = {0,0,0,0};
u_long triCount = 0;
// Drawing
//~ void drawBG(void);
//~ void drawPoly(MESH * meshes, long * Flag, int atime);
// Pad
void callback();
int main() {
//~ cmatP = &cmat;
VECTOR sp = {CENTERX,CENTERY,0};
VECTOR wp = {0,0,0};
// FIXME : Poly subdiv
//~ DIVPOLYGON4 div4 = { 0 };
//~ div4.pih = SCREENXRES;
//~ div4.piv = SCREENYRES;
//~ div4.ndiv = 2;
//~ long OTc = 0;
//~ DIVPOLYGON3 div3 = { 0 };
//~ div3.pih = SCREENXRES;
//~ div3.piv = SCREENYRES;
//~ div3.ndiv = 1;
init(disp, draw, db, &cmat, &BGc, &BKc);
generateTable();
VSyncCallback(callback);
// Load textures
for (int k = 0; k < sizeof(meshes)/sizeof(TMESH *); k++){
LoadTexture(meshes[k]->tim_data, meshes[k]->tim);
}
// Load current BG
if (camPtr->tim_data){
LoadTexture(camPtr->tim_data, camPtr->BGtim);
}
// Physics
short physics = 1;
long dt;
VECTOR col_lvl, col_sphere, col_sphere_act = {0};
// Cam stuff
VECTOR posToActor = {0, 0, 0, 0}; // position of camera relative to actor
VECTOR camAngleToAct = {0, 0, 0, 0}; // rotation angles for the camera to point at actor
// Sprite system
VECTOR posToCam = {0, 0, 0, 0};
VECTOR objAngleToCam = {0, 0, 0, 0};
int angle = 0; //PSX units = 4096 == 360° = 2Pi
int dist = 0; //PSX units
short timediv = 1;
int atime = 0;
// Polycount
for (int k = 0; k < sizeof(meshes)/sizeof(meshes[0]); k++){
triCount += meshes[k]->tmesh->len;
}
// Set camera starting pos
setCameraPos(&camera, camPtr->campos->pos, camPtr->campos->rot);
// Find curCamAngle if using pre-calculated BGs
if (camMode == 2) {
if (camPtr->tim_data){
curCamAngle = 1;
}
}
// Main loop
//~ while (1) {
while ( VSync(1) ) {
// Clear the main OT
ClearOTagR(otdisc[db], OT2LEN);
// Clear Secondary OT
ClearOTagR(ot[db], OTLEN);
// timeB = time;
time ++;
// atime is used for animations timing
timediv = 1;
if (time % timediv == 0){
atime ++;
}
// Angle between camera and actor
// using atantable (faster)
camAngleToAct.vy = (patan(-posToActor.vx, -posToActor.vz) / 16) - 3076 ;
camAngleToAct.vx = patan(dist, posToActor.vy) >> 4;
// Sprite system WIP
objAngleToCam.vy = patan( posToCam.vx,posToCam.vz );
objAngleToCam.vx = patan( posToCam.vx,posToCam.vy );
//~ objAngleToCam.vz = patan( posToCam.vz,posToCam.vy );
//~ objAngleToCam.vx = patan( psqrt(posToCam.vx * posToCam.vx + posToCam.vy * posToCam.vy), posToCam.vy );
//~ meshPlan.rot->vx = -( (objAngleToCam.vx >> 4) - 3076 ) ;
//~ meshPlan.rot->vx = (( (objAngleToCam.vx >> 4) - 3076 ) * ( (objAngleToCam.vz >> 4) - 3076 ) >> 12) * (nsin(posToCam.vz) >> 10 < 0 ? -1 : 1);
//~ meshPlan.rot->vx = ( (objAngleToCam.vx >> 4) - 3076 ) * ( (objAngleToCam.vz >> 4) - 3076 ) >> 12 ;
meshPlan.rot->vy = -( (objAngleToCam.vy >> 4) + 1024 ) ;
//~ posToCam = getVectorTo(*meshPlan.pos, camera.pos);
//~ posToCam = getVectorTo(camera.pos, *meshPlan.pos);
posToCam.vx = -camera.pos.vx - modelPlan_pos.vx ;
posToCam.vz = -camera.pos.vz - modelPlan_pos.vz ;
posToCam.vy = -camera.pos.vy - modelPlan_pos.vy ;
//~ psqrt(posToCam.vx * posToCam.vx + posToCam.vy * posToCam.vy);
// Actor Forward vector for 3d relative orientation
fVecActor = *actorPtr->pos;
fVecActor.vx = actorPtr->pos->vx + (nsin(actorPtr->rot->vy/2));
fVecActor.vz = actorPtr->pos->vz - (ncos(actorPtr->rot->vy/2));
// Camera modes
if(camMode != 2) {
camera.rot.vy = camAngleToAct.vy;
// using csin/ccos, no need for theta
//~ camera.rot.vy = angle;
camera.rot.vx = camAngleToAct.vx;
}
if(camMode < 4 ) {
lerping = 0;
}
// Camera follows actor with lerp for rotations
if(camMode == 0) {
dist = 150;
camera.pos.vx = -(camera.x/ONE);
//~ camera.pos.vy = -(camera.y/ONE);
camera.pos.vz = -(camera.z/ONE);
//~ InvCamPos.vx = camera.x/ONE;
//~ InvCamPos.vz = camera.z/ONE;
//~ applyVector(&InvCamPos, -1,-1,-1, *=);
angle = -actorPtr->rot->vy / 2;
//~ angle = actorPtr->rot->vy;
getCameraXZ(&camera.x, &camera.z, actorPtr->pos->vx, actorPtr->pos->vz, angle, dist);
// FIXME! camera lerping to pos
//~ angle += lerp(camera.rot.vy, -actorPtr->rot->vy, 128);
//~ angle = lerpD(camera.rot.vy << 12, actorPtr->rot->vy << 12, 1024 << 12) >> 12;
}
// Camera rotates continuously around actor
if (camMode == 1) {
dist = 150;
camera.pos.vx = -(camera.x/ONE);
//~ camera.pos.vy = -(camera.y/ONE);
camera.pos.vz = -(camera.z/ONE);
//~ fVecActor = *actorPtr->pos;
//~ fVecActor.vx = actorPtr->pos->vx + (nsin(actorPtr->rot->vy));
//~ fVecActor.vz = actorPtr->pos->vz - (ncos(actorPtr->rot->vy));
getCameraXZ(&camera.x, &camera.z, actorPtr->pos->vx, actorPtr->pos->vz, angle, dist);
angle += 10;
}
// Fixed Camera with actor tracking
if (camMode == 3) {
// Using precalc sqrt
dist = psqrt( (posToActor.vx * posToActor.vx ) + (posToActor.vz * posToActor.vz) );
camera.pos.vx = 190;
camera.pos.vz = 100;
camera.pos.vy = 180;
}
// Fixed Camera angle
if (camMode == 2) {
// If BG images exist
if (camPtr->tim_data){
checkLineW( &camAngles[ curCamAngle ]->fw.v3, &camAngles[ curCamAngle ]->fw.v2, actorPtr);
if ( camAngles[ curCamAngle ]->fw.v0.vx ) {
//~ FntPrint("BL x : %d, y : %d\n", camAngles[ curCamAngle ]->fw.v3.vx, camAngles[ curCamAngle ]->fw.v3.vy);
//~ FntPrint("BR x : %d, y : %d\n", camAngles[ curCamAngle ]->fw.v2.vx, camAngles[ curCamAngle ]->fw.v2.vy);
//~ FntPrint("Pos : %d\n", checkLineW( &camAngles[ curCamAngle ]->fw.v3, &camAngles[ curCamAngle ]->fw.v2, actorPtr) );
//~ FntPrint("Pos : %d\n", checkLineW( &camAngles[ curCamAngle ]->bw.v2, &camAngles[ curCamAngle ]->bw.v3, actorPtr) );
// If actor in camAngle->fw area of screen
if ( checkLineW( &camAngles[ curCamAngle ]->fw.v3, &camAngles[ curCamAngle ]->fw.v2, actorPtr) == -1 &&
( checkLineW( &camAngles[ curCamAngle ]->bw.v2, &camAngles[ curCamAngle ]->bw.v3, actorPtr) >= 0
)
) {
if (curCamAngle < 5) {
curCamAngle++;
camPtr = camAngles[ curCamAngle ];
LoadTexture(camPtr->tim_data, camPtr->BGtim);
}
}
}
if ( camAngles[ curCamAngle ]->bw.v0.vx ) {
//~ FntPrint("BL x : %d, y : %d\n", camAngles[ curCamAngle ]->bw.v3.vx, camAngles[ curCamAngle ]->bw.v3.vy);
//~ FntPrint("BR x : %d, y : %d\n", camAngles[ curCamAngle ]->bw.v2.vx, camAngles[ curCamAngle ]->bw.v2.vy);
//~ // FntPrint("Pos : %d\n", checkLineW( &camAngles[ curCamAngle ]->bw.v2, &camAngles[ curCamAngle ]->bw.v3, actorPtr) );
// If actor in camAngle->bw area of screen
if ( checkLineW( &camAngles[ curCamAngle ]->fw.v3, &camAngles[ curCamAngle ]->fw.v2, actorPtr) >= 0 &&
checkLineW( &camAngles[ curCamAngle ]->bw.v2, &camAngles[ curCamAngle ]->bw.v3, actorPtr) == -1
) {
if (curCamAngle > 0) {
curCamAngle--;
camPtr = camAngles[ curCamAngle ];
LoadTexture(camPtr->tim_data, camPtr->BGtim);
}
}
}
}
setCameraPos(&camera, camPtr->campos->pos, camPtr->campos->rot);
}
// Flyby mode with LERP from camStart to camEnd
if (camMode == 4) {
// If key pos exist for camera
if (camPath.len) {
// Lerping sequence has not begun
if (!lerping){
// Set cam start position ( first key pos )
camera.pos.vx = camPath.points[camPath.cursor].vx;
camera.pos.vy = camPath.points[camPath.cursor].vy;
camera.pos.vz = camPath.points[camPath.cursor].vz;
// Lerping sequence is starting
lerping = 1;
// Set cam pos index to 0
camPath.pos = 0;
}
// Pre calculated sqrt ( see psqrt() )
dist = psqrt( (posToActor.vx * posToActor.vx ) + (posToActor.vz * posToActor.vz));
// Fixed point precision 2^12 == 4096
int precision = 12;
camera.pos.vx = lerpD(camPath.points[camPath.cursor].vx << precision, camPath.points[camPath.cursor+1].vx << precision, camPath.pos << precision) >> precision;
camera.pos.vy = lerpD(camPath.points[camPath.cursor].vy << precision, camPath.points[camPath.cursor+1].vy << precision, camPath.pos << precision) >> precision;
camera.pos.vz = lerpD(camPath.points[camPath.cursor].vz << precision, camPath.points[camPath.cursor+1].vz << precision, camPath.pos << precision) >> precision;
//~ FntPrint("Cam %d, %d\n", (int32_t)camPath.points[camPath.cursor].vx, camPath.points[camPath.cursor+1].vx);
//~ FntPrint("Cam %d, %d, %d\n", camera.pos.vx, camera.pos.vy, camera.pos.vz);
//~ FntPrint("Theta y: %d x: %d\n", theta.vy, theta.vx);
//~ FntPrint("Pos: %d Cur: %d\nTheta y: %d x: %d\n", camPath.pos, camPath.cursor, theta.vy, theta.vx);
// Linearly increment the lerp factor
camPath.pos += 20;
// If camera has reached next key pos, reset pos index, move cursor to next key pos
if (camPath.pos > (1 << precision) ){
camPath.pos = 0;
camPath.cursor ++;
}
// Last key pos is reached, reset cursor to first key pos, lerping sequence is over
if ( camPath.cursor == camPath.len - 1 ){
lerping = 0;
camPath.cursor = 0;
}
} else {
// if no key pos exists, switch to next camMode
camMode ++; }
}
// Camera "on a rail" - cam is tracking actor, and moving with constraints on all axis
if (camMode == 5) {
// track actor. If theta (actor/cam rotation angle) is above or below an arbitrary angle,
// move cam so that the angle doesn't increase/decrease anymore.
short cameraSpeed = 40;
if (camPath.len) {
// Lerping sequence has not begun
if (!lerping){
// Set cam start position ( first key pos )
camera.pos.vx = camPath.points[camPath.cursor].vx;
camera.pos.vy = camPath.points[camPath.cursor].vy;
camera.pos.vz = camPath.points[camPath.cursor].vz;
// Lerping sequence is starting
lerping = 1;
// Set cam pos index to 0
camPath.pos = 0;
}
// Pre calculated sqrt ( see psqrt() )
dist = psqrt( (posToActor.vx * posToActor.vx ) + (posToActor.vz * posToActor.vz));
// Fixed point precision 2^12 == 4096
short precision = 12;
camera.pos.vx = lerpD(camPath.points[camPath.cursor].vx << precision, camPath.points[camPath.cursor + 1].vx << precision, camPath.pos << precision) >> precision;
camera.pos.vy = lerpD(camPath.points[camPath.cursor].vy << precision, camPath.points[camPath.cursor + 1].vy << precision, camPath.pos << precision) >> precision;
camera.pos.vz = lerpD(camPath.points[camPath.cursor].vz << precision, camPath.points[camPath.cursor + 1].vz << precision, camPath.pos << precision) >> precision;
//~ FntPrint("%d %d %d %d\n", camAngleToAct.vy, camera.pos.vx, camera.rot.vy, dist);
// Ony move cam if position is between first camPath.vx and last camPath.vx
if ( camAngleToAct.vy < -50 && camera.pos.vx > camPath.points[camPath.len - 1].vx ) {
// Clamp camPath position to cameraSpeed
camPath.pos += dist < cameraSpeed ? 0 : cameraSpeed ;
}
if ( camAngleToAct.vy > 50 && camera.pos.vx > camPath.points[camPath.cursor].vx ) {
camPath.pos -= dist < cameraSpeed ? 0 : cameraSpeed;
}
// If camera has reached next key pos, reset pos index, move cursor to next key pos
if (camPath.pos > (1 << precision) ){
camPath.pos = 0;
camPath.cursor ++;
}
if (camPath.pos < -100 ){
camPath.pos = 1 << precision;
camPath.cursor --;
}
// Last key pos is reached, reset cursor to first key pos, lerping sequence is over
if ( camPath.cursor == camPath.len - 1 || camPath.cursor < 0 ){
lerping = 0;
camPath.cursor = 0;
}
} else {
// if no key pos exists, switch to next camMode
camMode ++;
}
}
// Spatial partitioning
for ( int msh = 0; msh < curNode->siblings->index; msh ++ ) {
// Actor
if ( !getIntCollision( *actorPtr->body , *curNode->siblings->list[msh]->plane->body).vx &&
!getIntCollision( *actorPtr->body , *curNode->siblings->list[msh]->plane->body).vz )
{
if ( curNode != curNode->siblings->list[msh] ) {
curNode = curNode->siblings->list[msh];
levelPtr = curNode->plane;
}
}
// DONTNEED ?
// Moveable prop
//~ if ( !getIntCollision( *propPtr->body , *curNode->siblings->list[msh]->plane->body).vx &&
//~ !getIntCollision( *propPtr->body , *curNode->siblings->list[msh]->plane->body).vz ) {
//~ if ( propPtr->node != curNode->siblings->list[ msh ]){
//~ propPtr->node = curNode->siblings->list[ msh ];
//~ }
//~ }
if ( !getIntCollision( *propPtr->body , *curNode->plane->body).vx &&
!getIntCollision( *propPtr->body , *curNode->plane->body).vz ) {
propPtr->node = curNode;
}
}
// Physics
if ( physics ) {
// if(time%1 == 0){
for ( int k = 0; k < sizeof(meshes)/sizeof(meshes[0]);k ++ ) {
//~ for ( int k = 0; k < curNode->objects->index ; k ++){
if ( ( *meshes[k]->isRigidBody == 1 ) ) {
//~ if ( ( *curNode->rigidbodies->list[k]->isRigidBody == 1 ) ) {
//~ applyAcceleration(curNode->rigidbodies->list[k]->body);
applyAcceleration(meshes[k]->body);
// Get col with level ( modelgnd_body )
col_lvl = getIntCollision( *meshes[k]->body , *levelPtr->body );
col_sphere = getIntCollision( *propPtr->body, *propPtr->node->plane->body );
// col_sphere = getIntCollision( *propPtr->body, *levelPtr->body );
col_sphere_act = getExtCollision( *actorPtr->body, *propPtr->body );
// If no col with ground, fall off
if ( col_lvl.vy ) {
if ( !col_lvl.vx && !col_lvl.vz ) {
actorPtr->body->position.vy = actorPtr->body->min.vy;
}
}
if (col_sphere.vy){
if ( !col_sphere.vx && !col_sphere.vz ) {
propPtr->body->position.vy = propPtr->body->min.vy;
}
}
if (col_sphere_act.vx && col_sphere_act.vz ) {
propPtr->body->velocity.vx += actorPtr->body->velocity.vx;
propPtr->body->velocity.vz += actorPtr->body->velocity.vz;
if ( propPtr->body->velocity.vx ) {
VECTOR L = angularMom(*propPtr->body);
propPtr->rot->vz -= L.vx;
}
if ( propPtr->body->velocity.vz ) {
VECTOR L = angularMom( *propPtr->body );
propPtr->rot->vx -= L.vz;
}
}
meshes[k]->pos->vx = meshes[k]->body->position.vx;
meshes[k]->pos->vy = meshes[k]->body->position.vy ;
meshes[k]->pos->vz = meshes[k]->body->position.vz;
}
meshes[k]->body->velocity.vy = 0;
meshes[k]->body->velocity.vx = 0;
meshes[k]->body->velocity.vz = 0;
}
// }
}
if ( (camMode == 2) && (camPtr->tim_data ) ) {
worldToScreen(actorPtr->pos, &actorPtr->pos2D);
}
// Camera setup
// position of cam relative to actor
posToActor.vx = actorPtr->pos->vx + camera.pos.vx;
posToActor.vz = actorPtr->pos->vz + camera.pos.vz;
posToActor.vy = actorPtr->pos->vy + camera.pos.vy;
// Polygon drawing
static long Flag;
if ( (camMode == 2) && (camPtr->tim_data ) ) {
drawBG(camPtr, &nextpri, otdisc[db], &db);
// Loop on camAngles
for ( int mesh = 0 ; mesh < camAngles[ curCamAngle ]->index; mesh ++ ) {
transformMesh(&camera, camAngles[curCamAngle]->objects[mesh]);
drawPoly(camAngles[curCamAngle]->objects[mesh], &Flag, atime, &camMode, &nextpri, ot[db], &db, &draw[db]);
// int * camMode, char ** nextpri, u_long * ot, char * db, DRAWENV * draw)
}
}
else {
// Draw current node's plane
drawPoly( curNode->plane, &Flag, atime, &camMode, &nextpri, ot[db], &db, &draw[db]);
// Draw surrounding planes
for ( int sibling = 0; sibling < curNode->siblings->index; sibling++ ) {
drawPoly(curNode->siblings->list[ sibling ]->plane, &Flag, atime, &camMode, &nextpri, ot[db], &db, &draw[db]);
}
// Draw adjacent planes's children
for ( int sibling = 0; sibling < curNode->siblings->index; sibling++ ) {
for ( int object = 0; object < curNode->siblings->list[ sibling ]->objects->index; object++ ) {
long t = 0;
transformMesh(&camera, curNode->siblings->list[ sibling ]->objects->list[ object ]);
drawPoly( curNode->siblings->list[ sibling ]->objects->list[ object ], &Flag, atime, &camMode, &nextpri, ot[db], &db, &draw[db]);
}
}
// Draw current plane children
for ( int object = 0; object < curNode->objects->index; object++ ) {
transformMesh(&camera, curNode->objects->list[ object ]);
drawPoly( curNode->objects->list[ object ], &Flag, atime, &camMode, &nextpri, ot[db], &db, &draw[db]);
}
// Draw rigidbodies
for ( int object = 0; object < curNode->rigidbodies->index; object++ ) {
transformMesh(&camera, curNode->rigidbodies->list[ object ]);
drawPoly( curNode->rigidbodies->list[ object ], &Flag, atime, &camMode, &nextpri, ot[db], &db, &draw[db]);
}
}
// Find and apply light rotation matrix
RotMatrix(&lgtang, &rotlgt);
MulMatrix0(&lgtmat, &rotlgt, &light);
SetLightMatrix(&light);
// Set camera
applyCamera(&camera);
// Add secondary OT to main OT
AddPrims(otdisc[db], ot[db] + OTLEN - 1, ot[db]);
//~ FntPrint("CurNode : %x\nIndex: %d", curNode, curNode->siblings->index);
FntPrint("Time : %d dt :%d\n", VSync(-1) / 60, dt);
//~ FntPrint("%d\n", curCamAngle );
//~ FntPrint("%x\n", primbuff[db]);
//~ FntPrint("Actor : %d %d\n", actorPtr->pos->vx, actorPtr->pos->vy);
//~ FntPrint("%d %d\n", actorPtr->pos->vx, actorPtr->pos->vz);
//~ FntPrint("%d %d\n", actorPtr->pos2D.vx + CENTERX, actorPtr->pos2D.vy + CENTERY);
//~ FntPrint(" %d %d %d\n", wp.vx, wp.vy, wp.vz);
FntFlush(-1);
display( &disp[db], &draw[db], otdisc[db], primbuff[db], &nextpri, &db);
//~ display(disp, draw, otdisc[db], primbuff[db], nextpri, db);
//~ frame = VSync(-1);
}
return 0;
}
//void drawPoly(MESH * mesh, long * Flag, int atime){
//long nclip, t = 0;
//// mesh is POLY_GT3 ( triangle )
//if (mesh->index[t].code == 4) {
//POLY_GT3 * poly;
//// len member == # vertices, but here it's # of triangle... So, for each tri * 3 vertices ...
//for ( int i = 0; i < (mesh->tmesh->len * 3); i += 3 ) {
//// If mesh is not part of precalculated background, draw them, else, discard
//if ( !( *mesh->isBG ) || camMode != 2) {
//poly = (POLY_GT3 *)nextpri;
//// If Vertex Anim flag is set, use it
//if (*mesh->isAnim){
//// If interpolation flag is set, use it
//if(mesh->anim->interpolate){
//// Ping pong
////~ //if (mesh->anim->cursor > 4096 || mesh->anim->cursor < 0){
////~ // mesh->anim->dir *= -1;
////~ //}
//// Fixed point math precision
//short precision = 12;
//// Find next keyframe
//if (mesh->anim->cursor > (1 << precision)) {
//// There are still keyframes to interpolate between
//if ( mesh->anim->lerpCursor < mesh->anim->nframes - 1 ) {
//mesh->anim->lerpCursor ++;
//mesh->anim->cursor = 0;
//}
//// We've reached last frame, go back to first frame
//if ( mesh->anim->lerpCursor == mesh->anim->nframes - 1 ) {
//mesh->anim->lerpCursor = 0;
//mesh->anim->cursor = 0;
//}
//}
//// Let's lerp between keyframes
//// TODO : Finish lerped animation implementation
//// Vertex 1
//mesh->tmesh->v[ mesh->index[ t ].order.vx ].vx = lerpD( mesh->anim->data[mesh->anim->lerpCursor * mesh->anim->nvert + mesh->index[t].order.vx].vx << precision , mesh->anim->data[(mesh->anim->lerpCursor + 1) * mesh->anim->nvert + mesh->index[t].order.vx].vx << precision, mesh->anim->cursor << precision) >> precision;
//mesh->tmesh->v[ mesh->index[ t ].order.vx ].vz = lerpD( mesh->anim->data[mesh->anim->lerpCursor * mesh->anim->nvert + mesh->index[t].order.vx].vz << precision , mesh->anim->data[(mesh->anim->lerpCursor + 1) * mesh->anim->nvert + mesh->index[t].order.vx].vz << precision, mesh->anim->cursor << precision) >> precision;
//mesh->tmesh->v[ mesh->index[ t ].order.vx ].vy = lerpD( mesh->anim->data[mesh->anim->lerpCursor * mesh->anim->nvert + mesh->index[t].order.vx].vy << precision , mesh->anim->data[(mesh->anim->lerpCursor + 1) * mesh->anim->nvert + mesh->index[t].order.vx].vy << precision, mesh->anim->cursor << precision) >> precision;
//// Vertex 2
//mesh->tmesh->v[ mesh->index[ t ].order.vz ].vx = lerpD( mesh->anim->data[mesh->anim->lerpCursor * mesh->anim->nvert + mesh->index[t].order.vz].vx << precision , mesh->anim->data[(mesh->anim->lerpCursor + 1) * mesh->anim->nvert + mesh->index[t].order.vz].vx << precision, mesh->anim->cursor << precision) >> precision;
//mesh->tmesh->v[ mesh->index[ t ].order.vz ].vz = lerpD( mesh->anim->data[mesh->anim->lerpCursor * mesh->anim->nvert + mesh->index[t].order.vz].vz << precision , mesh->anim->data[(mesh->anim->lerpCursor + 1) * mesh->anim->nvert + mesh->index[t].order.vz].vz << precision, mesh->anim->cursor << precision) >> precision;
//mesh->tmesh->v[ mesh->index[ t ].order.vz ].vy = lerpD( mesh->anim->data[mesh->anim->lerpCursor * mesh->anim->nvert + mesh->index[t].order.vz].vy << precision , mesh->anim->data[(mesh->anim->lerpCursor + 1) * mesh->anim->nvert + mesh->index[t].order.vz].vy << precision, mesh->anim->cursor << precision) >> precision;
//// Vertex 3
//mesh->tmesh->v[ mesh->index[ t ].order.vy ].vx = lerpD( mesh->anim->data[mesh->anim->lerpCursor * mesh->anim->nvert + mesh->index[t].order.vy].vx << precision , mesh->anim->data[(mesh->anim->lerpCursor + 1) * mesh->anim->nvert + mesh->index[t].order.vy].vx << precision, mesh->anim->cursor << precision) >> precision;
//mesh->tmesh->v[ mesh->index[ t ].order.vy ].vz = lerpD( mesh->anim->data[mesh->anim->lerpCursor * mesh->anim->nvert + mesh->index[t].order.vy].vz << precision , mesh->anim->data[(mesh->anim->lerpCursor + 1) * mesh->anim->nvert + mesh->index[t].order.vy].vz << precision, mesh->anim->cursor << precision) >> precision;
//mesh->tmesh->v[ mesh->index[ t ].order.vy ].vy = lerpD( mesh->anim->data[mesh->anim->lerpCursor * mesh->anim->nvert + mesh->index[t].order.vy].vy << precision , mesh->anim->data[(mesh->anim->lerpCursor + 1) * mesh->anim->nvert + mesh->index[t].order.vy].vy << precision, mesh->anim->cursor << precision) >> precision;
//mesh->anim->cursor += 24 * mesh->anim->dir;
//// Coord transformation from world space to screen space
//nclip = RotAverageNclip3(
//&mesh->tmesh->v[ mesh->index[t].order.vx ],
//&mesh->tmesh->v[ mesh->index[t].order.vz ],
//&mesh->tmesh->v[ mesh->index[t].order.vy ],
//( long* ) &poly->x0, ( long* ) &poly->x1, ( long* ) &poly->x2,
//mesh->p,
//mesh->OTz,
//Flag
//);
//} else {
//// No interpolation
//// Use the pre-calculated vertices coordinates from the animation data
//nclip = RotAverageNclip3(
//&mesh->anim->data[ atime % mesh->anim->nframes * mesh->anim->nvert + mesh->index[t].order.vx ],
//&mesh->anim->data[ atime % mesh->anim->nframes * mesh->anim->nvert + mesh->index[t].order.vz ],
//&mesh->anim->data[ atime % mesh->anim->nframes * mesh->anim->nvert + mesh->index[t].order.vy ],
//( long* ) &poly->x0, ( long* ) &poly->x1, ( long* ) &poly->x2,
//mesh->p,
//mesh->OTz,
//Flag
//);
//}
//} else {
//// No animation
//// Use model's regular vertex coordinates
//nclip = RotAverageNclip3(
//&mesh->tmesh->v[ mesh->index[t].order.vx ],
//&mesh->tmesh->v[ mesh->index[t].order.vz ],
//&mesh->tmesh->v[ mesh->index[t].order.vy ],
//( long * ) &poly->x0, ( long * ) &poly->x1, ( long * ) &poly->x2,
//mesh->p,
//mesh->OTz,
//Flag
//);
//}
//// Do not draw invisible meshes
//if ( nclip > 0 && *mesh->OTz > 0 && (*mesh->p < 4096) ) {
//SetPolyGT3( poly );
//// If isPrism flag is set, use it
//// FIXME : Doesn't work with pre-rendered BGs
//if ( *mesh->isPrism ) {
//// Transparency effect :
//// Use current DRAWENV clip as TPAGE instead of regular textures
//( (POLY_GT3 *) poly )->tpage = getTPage( mesh->tim->mode&0x3, 0,
//draw[db].clip.x,
//draw[db].clip.y
//);
//// Use projected coordinates (results from RotAverage...) as UV coords and clamp them to 0-255,0-224 Why 224 though ?
//setUV3(poly, (poly->x0 < 0 ? 0 : poly->x0 > 255 ? 255 : poly->x0),
//(poly->y0 < 0 ? 0 : poly->y0 > 240 ? 240 : poly->y0),
//(poly->x1 < 0 ? 0 : poly->x1 > 255 ? 255 : poly->x1),
//(poly->y1 < 0 ? 0 : poly->y1 > 240 ? 240 : poly->y1),
//(poly->x2 < 0 ? 0 : poly->x2 > 255 ? 255 : poly->x2),
//(poly->y2 < 0 ? 0 : poly->y2 > 240 ? 240 : poly->y2)
//);
//} else {
//// No transparency effect
//// Use regular TPAGE
//( (POLY_GT3 *) poly )->tpage = getTPage(mesh->tim->mode&0x3, 0,
//mesh->tim->prect->x,
//mesh->tim->prect->y
//);
//setUV3(poly, mesh->tmesh->u[i].vx , mesh->tmesh->u[i].vy + mesh->tim->prect->y,
//mesh->tmesh->u[i+2].vx, mesh->tmesh->u[i+2].vy + mesh->tim->prect->y,
//mesh->tmesh->u[i+1].vx, mesh->tmesh->u[i+1].vy + mesh->tim->prect->y);
//}
//// CLUT setup
//// If tim mode == 0 | 1 (4bits/8bits image), set CLUT coordinates
//if ( (mesh->tim->mode & 0x3 ) < 2){
//setClut(poly,
//mesh->tim->crect->x,
//mesh->tim->crect->y);
//}
//if (*mesh->isSprite){
//SetShadeTex( poly, 1 );
//}
//// Defaults depth color to neutral grey
//CVECTOR outCol = { 128,128,128,0 };
//CVECTOR outCol1 = { 128,128,128,0 };
//CVECTOR outCol2 = { 128,128,128,0 };
//NormalColorDpq(&mesh->tmesh->n[ mesh->index[t].order.vx ], &mesh->tmesh->c[ mesh->index[t].order.vx ], *mesh->p, &outCol);
//NormalColorDpq(&mesh->tmesh->n[ mesh->index[t].order.vz ], &mesh->tmesh->c[ mesh->index[t].order.vz ], *mesh->p, &outCol1);
//NormalColorDpq(&mesh->tmesh->n[ mesh->index[t].order.vy ], &mesh->tmesh->c[ mesh->index[t].order.vy ], *mesh->p, &outCol2);
//// If transparent effect is in use, inhibate shadows
//if (*mesh->isPrism){
//// Use un-interpolated (i.e: no light, no fog) colors
//setRGB0(poly, mesh->tmesh->c[i].r, mesh->tmesh->c[i].g, mesh->tmesh->c[i].b);
//setRGB1(poly, mesh->tmesh->c[i+1].r, mesh->tmesh->c[i+1].g, mesh->tmesh->c[i+1].b);
//setRGB2(poly, mesh->tmesh->c[i+2].r, mesh->tmesh->c[i+2].g, mesh->tmesh->c[i+2].b);
//} else {
//setRGB0(poly, outCol.r, outCol.g , outCol.b);
//setRGB1(poly, outCol1.r, outCol1.g, outCol1.b);
//setRGB2(poly, outCol2.r, outCol2.g, outCol2.b);
//}
//if ( (*mesh->OTz > 0) && (*mesh->OTz < OTLEN) && (*mesh->p < 4096) ) {
//AddPrim(&ot[db][*mesh->OTz-2], poly);
//}
////~ mesh->pos2D.vx = *(&poly->x0);
////~ mesh->pos2D.vy = *(&poly->x0 + 1);
//// mesh->pos2D.vy = poly->x0;
//// FntPrint("%d %d\n", *(&poly->x0), *(&poly->x0 + 1));
//nextpri += sizeof(POLY_GT3);
//}
//t+=1;
//}
//}
//}
//// If mesh is quad
//if (mesh->index[t].code == 8) {
//POLY_GT4 * poly4;
//for (int i = 0; i < (mesh->tmesh->len * 4); i += 4) {
//// if mesh is not part of BG, draw them, else, discard
//if ( !(*mesh->isBG) || camMode != 2 ) {
//poly4 = (POLY_GT4 *)nextpri;
//// Vertex Anim
//if (*mesh->isAnim){
//// with interpolation
//if ( mesh->anim->interpolate ){
//// ping pong
////~ if (mesh->anim->cursor > 4096 || mesh->anim->cursor < 0){
////~ mesh->anim->dir *= -1;
////~ }
//short precision = 12;
//if ( mesh->anim->cursor > 1<<precision ) {
//if ( mesh->anim->lerpCursor < mesh->anim->nframes - 1 ) {
//mesh->anim->lerpCursor ++;
//mesh->anim->cursor = 0;
//}
//if ( mesh->anim->lerpCursor == mesh->anim->nframes - 1 ) {
//mesh->anim->lerpCursor = 0;
//mesh->anim->cursor = 0;
//}
//}
//// Vertex 1
//mesh->tmesh->v[ mesh->index[ t ].order.vx ].vx = lerpD( mesh->anim->data[ mesh->anim->lerpCursor * mesh->anim->nvert + mesh->index[ t ].order.vx ].vx << 12 , mesh->anim->data[ (mesh->anim->lerpCursor + 1) * mesh->anim->nvert + mesh->index[ t ].order.vx ].vx << 12, mesh->anim->cursor << 12) >> 12;
//mesh->tmesh->v[ mesh->index[ t ].order.vx ].vz = lerpD( mesh->anim->data[ mesh->anim->lerpCursor * mesh->anim->nvert + mesh->index[ t ].order.vx ].vz << 12 , mesh->anim->data[ (mesh->anim->lerpCursor + 1) * mesh->anim->nvert + mesh->index[ t ].order.vx ].vz << 12, mesh->anim->cursor << 12) >> 12;
//mesh->tmesh->v[ mesh->index[ t ].order.vx ].vy = lerpD( mesh->anim->data[ mesh->anim->lerpCursor * mesh->anim->nvert + mesh->index[ t ].order.vx ].vy << 12 , mesh->anim->data[ (mesh->anim->lerpCursor + 1) * mesh->anim->nvert + mesh->index[ t ].order.vx ].vy << 12, mesh->anim->cursor << 12) >> 12;
//// Vertex 2
//mesh->tmesh->v[ mesh->index[ t ].order.vz ].vx = lerpD( mesh->anim->data[ mesh->anim->lerpCursor * mesh->anim->nvert + mesh->index[ t ].order.vz ].vx << 12 , mesh->anim->data[ (mesh->anim->lerpCursor + 1) * mesh->anim->nvert + mesh->index[ t ].order.vz ].vx << 12, mesh->anim->cursor << 12) >> 12;
//mesh->tmesh->v[ mesh->index[ t ].order.vz ].vz = lerpD( mesh->anim->data[ mesh->anim->lerpCursor * mesh->anim->nvert + mesh->index[ t ].order.vz ].vz << 12 , mesh->anim->data[ (mesh->anim->lerpCursor + 1) * mesh->anim->nvert + mesh->index[ t ].order.vz ].vz << 12, mesh->anim->cursor << 12) >> 12;
//mesh->tmesh->v[ mesh->index[ t ].order.vz ].vy = lerpD( mesh->anim->data[ mesh->anim->lerpCursor * mesh->anim->nvert + mesh->index[ t ].order.vz ].vy << 12 , mesh->anim->data[ (mesh->anim->lerpCursor + 1) * mesh->anim->nvert + mesh->index[ t ].order.vz ].vy << 12, mesh->anim->cursor << 12) >> 12;
//// Vertex 3
//mesh->tmesh->v[ mesh->index[ t ].order.vy ].vx = lerpD( mesh->anim->data[ mesh->anim->lerpCursor * mesh->anim->nvert + mesh->index[ t ].order.vy ].vx << 12 , mesh->anim->data[ (mesh->anim->lerpCursor + 1) * mesh->anim->nvert + mesh->index[ t ].order.vy ].vx << 12, mesh->anim->cursor << 12) >> 12;
//mesh->tmesh->v[ mesh->index[ t ].order.vy ].vz = lerpD( mesh->anim->data[ mesh->anim->lerpCursor * mesh->anim->nvert + mesh->index[ t ].order.vy ].vz << 12 , mesh->anim->data[ (mesh->anim->lerpCursor + 1) * mesh->anim->nvert + mesh->index[ t ].order.vy ].vz << 12, mesh->anim->cursor << 12) >> 12;
//mesh->tmesh->v[ mesh->index[ t ].order.vy ].vy = lerpD( mesh->anim->data[ mesh->anim->lerpCursor * mesh->anim->nvert + mesh->index[ t ].order.vy ].vy << 12 , mesh->anim->data[ (mesh->anim->lerpCursor + 1) * mesh->anim->nvert + mesh->index[ t ].order.vy ].vy << 12, mesh->anim->cursor << 12) >> 12;
//// Vertex 4
//mesh->tmesh->v[ mesh->index[ t ].order.pad ].vx = lerpD( mesh->anim->data[ mesh->anim->lerpCursor * mesh->anim->nvert + mesh->index[ t ].order.pad ].vx << 12 , mesh->anim->data[ (mesh->anim->lerpCursor + 1) * mesh->anim->nvert + mesh->index[ t ].order.pad ].vx << 12, mesh->anim->cursor << 12) >> 12;
//mesh->tmesh->v[ mesh->index[ t ].order.pad ].vz = lerpD( mesh->anim->data[ mesh->anim->lerpCursor * mesh->anim->nvert + mesh->index[ t ].order.pad ].vz << 12 , mesh->anim->data[ (mesh->anim->lerpCursor + 1) * mesh->anim->nvert + mesh->index[ t ].order.pad ].vz << 12, mesh->anim->cursor << 12) >> 12;
//mesh->tmesh->v[ mesh->index[ t ].order.pad ].vy = lerpD( mesh->anim->data[ mesh->anim->lerpCursor * mesh->anim->nvert + mesh->index[ t ].order.pad ].vy << 12 , mesh->anim->data[ (mesh->anim->lerpCursor + 1) * mesh->anim->nvert + mesh->index[ t ].order.pad ].vy << 12, mesh->anim->cursor << 12) >> 12;
//mesh->anim->cursor += 2 * mesh->anim->dir;
//// Coord transformations
//nclip = RotAverageNclip4(
//&mesh->tmesh->v[ mesh->index[t].order.pad ],
//&mesh->tmesh->v[ mesh->index[t].order.vz],
//&mesh->tmesh->v[ mesh->index[t].order.vx ],
//&mesh->tmesh->v[ mesh->index[t].order.vy ],
//( long* )&poly4->x0, ( long* )&poly4->x1, ( long* )&poly4->x2, ( long* )&poly4->x3,
//mesh->p,
//mesh->OTz,
//Flag
//);
//} else {
//// No interpolation, use all vertices coordinates in anim data
//nclip = RotAverageNclip4(
//&mesh->anim->data[ atime % mesh->anim->nframes * mesh->anim->nvert + mesh->index[t].order.pad ],
//&mesh->anim->data[ atime % mesh->anim->nframes * mesh->anim->nvert + mesh->index[t].order.vz ],
//&mesh->anim->data[ atime % mesh->anim->nframes * mesh->anim->nvert + mesh->index[t].order.vx ],
//&mesh->anim->data[ atime % mesh->anim->nframes * mesh->anim->nvert + mesh->index[t].order.vy ],
//( long* )&poly4->x0, ( long* )&poly4->x1, ( long* )&poly4->x2, ( long* )&poly4->x3,
//mesh->p,
//mesh->OTz,
//Flag
//);
//}
//} else {
//// No animation
//// Use regulare vertex coords
//nclip = RotAverageNclip4(
//&mesh->tmesh->v[ mesh->index[t].order.pad ],
//&mesh->tmesh->v[ mesh->index[t].order.vz],
//&mesh->tmesh->v[ mesh->index[t].order.vx ],
//&mesh->tmesh->v[ mesh->index[t].order.vy ],
//(long*)&poly4->x0, (long*)&poly4->x1, (long*)&poly4->x2, (long*)&poly4->x3,
//mesh->p,
//mesh->OTz,
//Flag
//);
//}
//if (nclip > 0 && *mesh->OTz > 0 && (*mesh->p < 4096)) {
//SetPolyGT4(poly4);
//// FIXME : Polygon subdiv - is it working ?
////~ OTc = *mesh->OTz >> 4;
////~ FntPrint("OTC:%d", OTc);
////~ if (OTc < 4) {
////~ if (OTc > 1) div4.ndiv = 1; else div4.ndiv = 2;
////~ DivideGT4(
////~ // Vertex coord
////~ &mesh->tmesh->v[ mesh->index[t].order.pad ],
////~ &mesh->tmesh->v[ mesh->index[t].order.vz ],
////~ &mesh->tmesh->v[ mesh->index[t].order.vx ],
////~ &mesh->tmesh->v[ mesh->index[t].order.vy ],
////~ // UV coord
////~ mesh->tmesh->u[i+3],
////~ mesh->tmesh->u[i+2],
////~ mesh->tmesh->u[i+0],
////~ mesh->tmesh->u[i+1],
////~ // Color
////~ mesh->tmesh->c[i],
////~ mesh->tmesh->c[i+1],
////~ mesh->tmesh->c[i+2],
////~ mesh->tmesh->c[i+3],
////~ // Gpu packet
////~ poly4,
////~ &ot[db][*mesh->OTz],
////~ &div4);
////~ // Increment primitive list pointer
////~ nextpri += ( (sizeof(POLY_GT4) + 3) / 4 ) * (( 1 << ( div4.ndiv )) << ( div4.ndiv ));
////~ triCount = ((1<<(div4.ndiv))<<(div4.ndiv));
////~ } else if (OTc < 48) {
//// Transparency effect
//if (*mesh->isPrism){
//// Use current DRAWENV clip as TPAGE
//( (POLY_GT4 *) poly4)->tpage = getTPage(mesh->tim->mode&0x3, 0,
//draw[db].clip.x,
//draw[db].clip.y
//);
//// Use projected coordinates
//setUV4( poly4,
//(poly4->x0 < 0? 0 : poly4->x0 > 255? 255 : poly4->x0),
//(poly4->y0 < 0? 0 : poly4->y0 > 224? 224 : poly4->y0),
//(poly4->x1 < 0? 0 : poly4->x1 > 255? 255 : poly4->x1),
//(poly4->y1 < 0? 0 : poly4->y1 > 224? 224 : poly4->y1),
//(poly4->x2 < 0? 0 : poly4->x2 > 255? 255 : poly4->x2),
//(poly4->y2 < 0? 0 : poly4->y2 > 224? 224 : poly4->y2),
//(poly4->x3 < 0? 0 : poly4->x3 > 255? 255 : poly4->x3),
//(poly4->y3 < 0? 0 : poly4->y3 > 224? 224 : poly4->y3)
//);
//} else {
//// Use regular TPAGE
//( (POLY_GT4 *) poly4)->tpage = getTPage(
//mesh->tim->mode&0x3, 0,
//mesh->tim->prect->x,
//mesh->tim->prect->y
//);
//// Use model UV coordinates
//setUV4( poly4,
//mesh->tmesh->u[i+3].vx, mesh->tmesh->u[i+3].vy + mesh->tim->prect->y,
//mesh->tmesh->u[i+2].vx, mesh->tmesh->u[i+2].vy + mesh->tim->prect->y,
//mesh->tmesh->u[i+0].vx, mesh->tmesh->u[i+0].vy + mesh->tim->prect->y,
//mesh->tmesh->u[i+1].vx, mesh->tmesh->u[i+1].vy + mesh->tim->prect->y
//);
//}
//if (*mesh->isSprite){
//SetShadeTex( poly4, 1 );
//}
//// If tim mode == 0 | 1, set CLUT coordinates
//if ( (mesh->tim->mode & 0x3) < 2 ) {
//setClut(poly4,
//mesh->tim->crect->x,
//mesh->tim->crect->y
//);
//}
//CVECTOR outCol = {128,128,128,0};
//CVECTOR outCol1 = {128,128,128,0};
//CVECTOR outCol2 = {128,128,128,0};
//CVECTOR outCol3 = {128,128,128,0};
//NormalColorDpq(&mesh->tmesh->n[ mesh->index[t].order.pad ] , &mesh->tmesh->c[ mesh->index[t].order.pad ], *mesh->p, &outCol);
//NormalColorDpq(&mesh->tmesh->n[ mesh->index[t].order.vz ], &mesh->tmesh->c[ mesh->index[t].order.vz ], *mesh->p, &outCol1);
//NormalColorDpq(&mesh->tmesh->n[ mesh->index[t].order.vx ], &mesh->tmesh->c[ mesh->index[t].order.vx ], *mesh->p, &outCol2);
//NormalColorDpq(&mesh->tmesh->n[ mesh->index[t].order.vy ], &mesh->tmesh->c[ mesh->index[t].order.vy ], *mesh->p, &outCol3);
//if (*mesh->isPrism){
//setRGB0(poly4, mesh->tmesh->c[i].r, mesh->tmesh->c[i].g, mesh->tmesh->c[i].b);
//setRGB1(poly4, mesh->tmesh->c[i+1].r, mesh->tmesh->c[i+1].g, mesh->tmesh->c[i+1].b);
//setRGB2(poly4, mesh->tmesh->c[i+2].r, mesh->tmesh->c[i+2].g, mesh->tmesh->c[i+2].b);
//setRGB3(poly4, mesh->tmesh->c[i+3].r, mesh->tmesh->c[i+3].g, mesh->tmesh->c[i+3].b);
//} else {
//setRGB0(poly4, outCol.r, outCol.g , outCol.b);
//setRGB1(poly4, outCol1.r, outCol1.g, outCol1.b);
//setRGB2(poly4, outCol2.r, outCol2.g, outCol2.b);
//setRGB3(poly4, outCol3.r, outCol3.g, outCol3.b);
//}
//if ( (*mesh->OTz > 0) && (*mesh->OTz < OTLEN) && (*mesh->p < 4096) ) {
//AddPrim( &ot[ db ][ *mesh->OTz-3 ], poly4 );
//}
//nextpri += sizeof( POLY_GT4 );
//}
//t += 1;
//}
//}
//}
//};
void callback() {
u_short pad = PadRead(0);
static u_short lastPad;
static short forceApplied = 0;
int div = 32;
static int lerpValues[4096 >> 7];
static short cursor = 0;
//~ static short curCamAngle = 0;
if( !lerpValues[0] ) {
for ( long long i = 0; i < div ; i++ ){
lerpValues[(div-1)-i] = lerp(-24, -264, easeIn(i));
}
}
if( timer ) {
timer--;
}
if( cursor>0 ) {
cursor--;
}
if ( pad & PADR1 && !timer ) {
if (!camPtr->tim_data){
if(camMode < 6){
camMode ++;
lerping = 0;
} else {
setCameraPos(&camera, camPtr->campos->pos, camPtr->campos->rot);
camPath.cursor = 0;
camMode = 0;
lerping = 0;
}
} else {
if (curCamAngle > 4) {
curCamAngle = 0;
}
if (curCamAngle < 5) {
curCamAngle++;
camPtr = camAngles[ curCamAngle ];
LoadTexture(camPtr->tim_data, camPtr->BGtim);
}
}
lastPad = pad;
timer = 10;
}
if ( !(pad & PADR1) && lastPad & PADR1 ) {
//~ pressed = 0;
}
if ( pad & PADL2 ) {
lgtang.vy += 32;
}
if ( pad & PADL1 ) {
lgtang.vz += 32;
}
if ( pad & PADRup && !timer ){
if (*actorPtr->isPrism){
*actorPtr->isPrism = 0;
} else {
*actorPtr->isPrism = 1;
}
timer = 10;
lastPad = pad;
}
if ( pad & PADRdown && !timer ){
//~ if (actorPtr->body->gForce.vy >= 0 && actorPtr->body->position.vy >= actorPtr->body->min.vy ){
//~ forceApplied -= 150;
//~ }
cursor = div - 15;
timer = 30;
lastPad = pad;
}
if ( !(pad & PADRdown) && lastPad & PADRdown ) {
//~ lastPad = pad;
}
if ( pad & PADRleft && !timer ) {
if (actorPtr->anim->interpolate){
actorPtr->anim->interpolate = 0;
} else {
actorPtr->anim->interpolate = 1;
}
timer = 10;
lastPad = pad;
}
if ( pad & PADLup ) {
actorPtr->body->gForce.vz = getVectorTo(fVecActor, *actorPtr->pos).vz >> 8 ;
actorPtr->body->gForce.vx = -getVectorTo(fVecActor, *actorPtr->pos).vx >> 8 ;
lastPad = pad;
}
if ( !(pad & PADLup) && lastPad & PADLup) {
actorPtr->body->gForce.vz = 0;
actorPtr->body->gForce.vx = 0;
}
if ( pad & PADLdown ) {
actorPtr->body->gForce.vz = -getVectorTo(fVecActor, *actorPtr->pos).vz >> 8 ;
actorPtr->body->gForce.vx = getVectorTo(fVecActor, *actorPtr->pos).vx >> 8 ;
lastPad = pad;
}
if ( !(pad & PADLdown) && lastPad & PADLdown) {
actorPtr->body->gForce.vz = 0;
actorPtr->body->gForce.vx = 0;
lastPad = pad;
}
if ( pad & PADLleft ) {
actorPtr->rot->vy -= 32;
lastPad = pad;
}
if ( pad & PADLright ) {
actorPtr->rot->vy += 32;
lastPad = pad;
}
if ( cursor ) {
actorPtr->body->position.vy = lerpValues[cursor];}
};