1247 lines
48 KiB
C
1247 lines
48 KiB
C
// 3dcam
|
||
// With huge help from @NicolasNoble : https://discord.com/channels/642647820683444236/646765703143227394/796876392670429204
|
||
|
||
|
||
/* PSX screen coordinate system
|
||
*
|
||
* Z+
|
||
* /
|
||
* /
|
||
* +------X+
|
||
* /|
|
||
* / |
|
||
* / Y+
|
||
* eye */
|
||
|
||
#include <sys/types.h>
|
||
#include <libgte.h>
|
||
#include <libgpu.h>
|
||
#include <libetc.h>
|
||
#include <stdio.h>
|
||
|
||
// Precalculated sin/cos values
|
||
//~ #include "psin.c"
|
||
//~ #include "pcos.c"
|
||
#include "atan.c"
|
||
|
||
// Sample vector model
|
||
#include "coridor.c"
|
||
//~ #include "gnd.c"
|
||
|
||
#define VMODE 0
|
||
|
||
#define SCREENXRES 320
|
||
#define SCREENYRES 240
|
||
|
||
#define CENTERX SCREENXRES/2
|
||
#define CENTERY SCREENYRES/2
|
||
|
||
#define OTLEN 256 // Maximum number of OT entries
|
||
#define PRIMBUFFLEN 2260 * sizeof(POLY_GT3) // Maximum number of POLY_GT3 primitives
|
||
|
||
// atantable
|
||
#define SWAP(a,b,c) {(c)=(a); (a)=(b); (b)=(c);} // swap(x, y, buffer)
|
||
|
||
// dotproduct of two vectors
|
||
#define dotProduct(v0, v1) \
|
||
(v0).vx * (v1).vx + \
|
||
(v0).vy * (v1).vy + \
|
||
(v0).vz * (v1).vz
|
||
|
||
// min value
|
||
#define min(a,b) \
|
||
(a)-(b)>0?(b):(a)
|
||
// max
|
||
#define max(a,b) \
|
||
(a)-(b)>0?(a):(b)
|
||
|
||
#define subVector(v0, v1) \
|
||
(v0).vx - (v1).vx, \
|
||
(v0).vy - (v1).vy, \
|
||
(v0).vz - (v1).vz
|
||
|
||
//~ extern ushort rcossin_tbl[];
|
||
|
||
// Display and draw environments, double buffered
|
||
DISPENV disp[2];
|
||
DRAWENV draw[2];
|
||
|
||
u_long ot[2][OTLEN] = {0}; // Ordering table (contains addresses to primitives)
|
||
char primbuff[2][PRIMBUFFLEN] = {0}; // Primitive list // That's our prim buffer
|
||
|
||
//~ int primcnt=0; // Primitive counter
|
||
|
||
char * nextpri = primbuff[0]; // Primitive counter
|
||
|
||
char db = 0; // Current buffer counter
|
||
|
||
|
||
CVECTOR BGc = {50, 50, 75, 0};
|
||
VECTOR BKc = {100, 100, 100, 0};
|
||
|
||
// Local color matrix
|
||
|
||
//~ static MATRIX cmat = {
|
||
//~ /* light source #0, #1, #2, */
|
||
//~ ONE, 0, 0, /* R */
|
||
//~ 0, ONE, 0, /* G */
|
||
//~ 0, 0, ONE, /* B */
|
||
//~ };
|
||
|
||
//~ // local light matrix : Direction and reach of each light source.
|
||
//~ // Each light is aligned with the axis, hence direction is in the same coordinate system as the PSX (Y-axis down)
|
||
//~ // One == 4096 is reach/intensity of light source
|
||
//~ static MATRIX lgtmat = {
|
||
//~ // X Y Z
|
||
//~ ONE, 0, 0, // Light 0
|
||
//~ 0,0,0, // Light 1
|
||
//~ 0,0,0 // Light 2
|
||
//~ };
|
||
|
||
// Light
|
||
|
||
//~ MATRIX rottrans;
|
||
MATRIX rotlgt;
|
||
SVECTOR lgtang = {0, 0, 0};
|
||
MATRIX light;
|
||
|
||
//~ SVECTOR lgtang = {1024, -512, 1024};
|
||
|
||
static int m_cosTable[512]; // precalc costable
|
||
static const unsigned int DC_2PI = 2048; // this is from gere : https://github.com/grumpycoders/Balau/blob/master/tests/test-Handles.cc#L20-L102
|
||
static const unsigned int DC_PI = 1024;
|
||
static const unsigned int DC_PI2 = 512;
|
||
|
||
short vs;
|
||
|
||
typedef struct{
|
||
int x, xv; // x: current value += xv : new value
|
||
int y, yv; // x,y,z, vx, vy, vz are in PSX units (ONE == 4096)
|
||
int z, zv;
|
||
int pan, panv;
|
||
int tilt, tiltv;
|
||
int rol;
|
||
|
||
VECTOR pos;
|
||
SVECTOR rot;
|
||
SVECTOR dvs;
|
||
|
||
MATRIX mat;
|
||
} CAMERA;
|
||
|
||
CAMERA camera = {
|
||
0,0,
|
||
0,0,
|
||
0,0,
|
||
0,0,
|
||
0,0,
|
||
0,
|
||
|
||
{0,0,0},
|
||
{0,0,0},
|
||
{0,0,0}
|
||
};
|
||
|
||
|
||
//~ //vertex anim
|
||
|
||
//~ typedef struct {
|
||
//~ int nframes; // number of frames e.g 20
|
||
//~ int nvert; // number of vertices e.g 21
|
||
//~ SVECTOR data[]; // vertex pos as SVECTORs e.g 20 * 21 SVECTORS
|
||
//~ } VANIM;
|
||
|
||
|
||
//Pad
|
||
int pressed = 0;
|
||
|
||
// Cam stuff
|
||
int camMode = 2;
|
||
long timeB = 0;
|
||
|
||
u_long triCount = 0;
|
||
|
||
// Prototypes
|
||
|
||
// Sin/Cos Table
|
||
void generateTable(void);
|
||
int ncos(u_int t);
|
||
int nsin(u_int t);
|
||
|
||
// Atan table
|
||
int patan(int x, int y);
|
||
|
||
//sqrt
|
||
u_int psqrt(u_int n);
|
||
|
||
// PSX setup
|
||
void init(void);
|
||
void display(void);
|
||
|
||
// Utils
|
||
void LoadTexture(u_long * tim, TIM_IMAGE * tparam);
|
||
int cliptest3(short * v1);
|
||
int lerp(int start, int end, int factor); // FIXME : not working as it should
|
||
SVECTOR SVlerp(SVECTOR start, SVECTOR end, int factor); // FIXME
|
||
|
||
// Camera
|
||
void getCameraXZ(int * x, int * z, int actorX, int actorZ, int angle, int distance);
|
||
void applyCamera(CAMERA * cam);
|
||
void setCameraPos(VECTOR pos, SVECTOR rot);
|
||
|
||
// Physics
|
||
VECTOR getIntCollision(BODY one, BODY two);
|
||
VECTOR getExtCollision(BODY one, BODY two);
|
||
void ResolveCollision( BODY * one, BODY * two );
|
||
|
||
|
||
void applyAcceleration(BODY * actor);
|
||
|
||
void callback();
|
||
|
||
int main() {
|
||
|
||
// Mesh stuff
|
||
|
||
int i;
|
||
long t, p, OTz, OTc, Flag, nclip; // t == vertex count, p == depth cueing interpolation value, OTz == value to create Z-ordered OT, Flag == see LibOver47.pdf, p.143
|
||
POLY_GT3 * poly;
|
||
|
||
//~ // Poly subdiv
|
||
//~ DIVPOLYGON3 div = { 0 };
|
||
//~ div.pih = SCREENXRES;
|
||
//~ div.piv = SCREENYRES;
|
||
|
||
//~ CVECTOR outCol ={0,0,0,0};
|
||
//~ CVECTOR outCol1 ={0,0,0,0};
|
||
//~ CVECTOR outCol2 ={0,0,0,0};
|
||
|
||
MATRIX Cmatrix = {0};
|
||
|
||
init();
|
||
|
||
generateTable();
|
||
|
||
VSyncCallback(callback);
|
||
|
||
//~ SetLightMatrix(&LLM);
|
||
SetColorMatrix(&cmat);
|
||
|
||
SetBackColor(BKc.vx,BKc.vy,BKc.vz);
|
||
//~ SetFarColor(BGc.r, BGc.g, BGc.b);
|
||
SetFogNearFar(1200, 1600, SCREENXRES);
|
||
|
||
for (int k = 0; k < sizeof(meshes)/sizeof(TMESH *); k++){
|
||
LoadTexture(meshes[k]->tim_data, meshes[k]->tim);
|
||
}
|
||
|
||
// physics
|
||
short physics = 1;
|
||
long time = 0;
|
||
|
||
long dt;
|
||
|
||
VECTOR col_lvl, col_sphere = {0};
|
||
|
||
// Actor start pos
|
||
|
||
//~ modelobject_body.position.vx = modelobject_pos.vx = 50;
|
||
|
||
// Cam stuff
|
||
|
||
VECTOR posToActor = {0, 0, 0, 0}; // position of camera relative to actor
|
||
VECTOR theta = {0, 0, 0, 0}; // rotation angles for the camera to point at actor
|
||
|
||
int angle = 0; //PSX units = 4096 == 360° = 2Pi
|
||
int dist = 0; //PSX units
|
||
|
||
int lerping = 0;
|
||
|
||
// Vertex anim
|
||
|
||
//~ SVECTOR interpCache[5];
|
||
SVECTOR a,b,c = {0,0,0,0};
|
||
|
||
short timediv = 1;
|
||
|
||
int atime = 0;
|
||
|
||
for (int k = 0; k < sizeof(meshes)/sizeof(meshes[0]); k++){
|
||
triCount += meshes[k]->tmesh->len;
|
||
}
|
||
|
||
// Main loop
|
||
while (1) {
|
||
//~ timeB = time;
|
||
time ++;
|
||
|
||
timediv = 2;
|
||
|
||
if (time % timediv == 0){
|
||
atime ++;
|
||
}
|
||
|
||
//~ timediv = 1;
|
||
|
||
|
||
|
||
//~ // Physics
|
||
//~ if (time%2 == 0){
|
||
|
||
|
||
// using libgte ratan (slower)
|
||
//~ theta.vy = -ratan2(posToActor.vx, posToActor.vz) ;
|
||
//~ theta.vx = 1024 - ratan2(dist, posToActor.vy);
|
||
|
||
// using atantable (faster)
|
||
theta.vy = patan(posToActor.vx, posToActor.vz) / 16 - 1024 ;
|
||
theta.vx = patan(dist, posToActor.vy)/16;
|
||
|
||
if(camMode != 2){
|
||
|
||
camera.rot.vy = theta.vy;
|
||
// using csin/ccos, no need for theta
|
||
//~ camera.rot.vy = angle;
|
||
camera.rot.vx = theta.vx;
|
||
|
||
}
|
||
|
||
if(camMode != 4){
|
||
lerping = 0;
|
||
}
|
||
|
||
if(camMode == 0){ // Camera follows actor with lerp for rotations
|
||
dist = 150;
|
||
camera.pos.vx = -(camera.x/ONE);
|
||
//~ camera.pos.vy = -(camera.y/ONE);
|
||
camera.pos.vz = -(camera.z/ONE);
|
||
|
||
getCameraXZ(&camera.x, &camera.z, modelobject_pos.vx, modelobject_pos.vz, angle, dist);
|
||
|
||
angle += lerp(camera.rot.vy, modelobject_rot.vy, 128);
|
||
|
||
}
|
||
|
||
if (camMode == 1){ // mode 1 : Camera rotates continuously
|
||
|
||
dist = 150;
|
||
camera.pos.vx = -(camera.x/ONE);
|
||
//~ camera.pos.vy = -(camera.y/ONE);
|
||
camera.pos.vz = -(camera.z/ONE);
|
||
|
||
getCameraXZ(&camera.x, &camera.z, modelobject_pos.vx, modelobject_pos.vz, angle, dist);
|
||
angle += 10;
|
||
}
|
||
|
||
if (camMode == 3){ // mode 3 : Fixed Camera with actor tracking
|
||
|
||
// Using libgte sqrt ( slower)
|
||
//~ dist = SquareRoot0( (posToActor.vx * posToActor.vx ) + (posToActor.vz * posToActor.vz) );
|
||
|
||
// Using precalc sqrt
|
||
dist = psqrt( (posToActor.vx * posToActor.vx ) + (posToActor.vz * posToActor.vz) );
|
||
|
||
camera.pos.vx = 290;
|
||
camera.pos.vz = 100;
|
||
camera.pos.vy = 180;
|
||
}
|
||
|
||
if (camMode == 2){ // mode 2 : Fixed Camera
|
||
|
||
setCameraPos(camStartPos.pos, camStartPos.rot);
|
||
|
||
}
|
||
|
||
if(camMode == 4){ // Flyby mode from camStart to camEnd
|
||
|
||
if (!lerping){
|
||
// Set cam start position
|
||
|
||
camera.pos.vx = camPath.points[camPath.cursor].vx;
|
||
camera.pos.vy = camPath.points[camPath.cursor].vy;
|
||
camera.pos.vz = camPath.points[camPath.cursor].vz;
|
||
|
||
lerping = 1;
|
||
}
|
||
|
||
// Pre calculated sqrt ( see psqrt() )
|
||
dist = psqrt( (posToActor.vx * posToActor.vx ) + (posToActor.vz * posToActor.vz) );
|
||
|
||
short r = camPath.points[camPath.cursor+1].vx - camera.pos.vx;
|
||
short s = camPath.points[camPath.cursor+1].vy - camera.pos.vy;
|
||
short t = camPath.points[camPath.cursor+1].vz - camera.pos.vz;
|
||
|
||
// FIXME : the lerp function is incorrect
|
||
//~ camera.pos.vx += lerp(camPath.points[camPath.cursor].vx, camPath.points[camPath.cursor+1].vx, 64);
|
||
//~ camera.pos.vy += lerp(camPath.points[camPath.cursor].vy, camPath.points[camPath.cursor+1].vy, 64);
|
||
//~ camera.pos.vz += lerp(camPath.points[camPath.cursor].vz, camPath.points[camPath.cursor+1].vz, 64);
|
||
|
||
// easeOut
|
||
camera.pos.vx += lerp(camera.pos.vx, camPath.points[camPath.cursor+1].vx, 128);
|
||
camera.pos.vy += lerp(camera.pos.vy, camPath.points[camPath.cursor+1].vy, 128);
|
||
camera.pos.vz += lerp(camera.pos.vz, camPath.points[camPath.cursor+1].vz, 128);
|
||
|
||
//~ if ( camera.pos.vx <= camPath.points[camPath.cursor+1].vx ||
|
||
//~ camera.pos.vy >= camPath.points[camPath.cursor+1].vy ||
|
||
//~ camera.pos.vz <= camPath.points[camPath.cursor+1].vz){
|
||
//~ camPath.cursor ++;
|
||
//~ }
|
||
|
||
if ( camera.pos.vx + r == camPath.points[camPath.cursor+1].vx &&
|
||
camera.pos.vy + s == camPath.points[camPath.cursor+1].vy &&
|
||
camera.pos.vz + t == camPath.points[camPath.cursor+1].vz){
|
||
camPath.cursor ++;
|
||
}
|
||
|
||
if ( camPath.cursor == camPath.len - 1 ){
|
||
lerping = 0;
|
||
camPath.cursor = 0;
|
||
}
|
||
|
||
|
||
}
|
||
|
||
|
||
//~ dt = time/180+1 - time/180;
|
||
if (physics){
|
||
//~ if(time%1 == 0){
|
||
for ( int k = 0; k < sizeof(meshes)/sizeof(meshes[0]);k ++){
|
||
|
||
if ( *meshes[k]->isRigidBody == 1 ) {
|
||
|
||
applyAcceleration(meshes[k]->body);
|
||
|
||
//~ VECTOR col_lvl, col_sphere = {0};
|
||
|
||
// Get col with level ( modelgnd_body )
|
||
col_lvl = getIntCollision( *meshes[k]->body , modelgnd_body );
|
||
|
||
col_sphere = getExtCollision( modelobject_body, modelSphere_body );
|
||
|
||
// If !col, keep moving
|
||
|
||
if ( !col_lvl.vx ){ meshes[k]->pos->vx = meshes[k]->body->position.vx; }
|
||
|
||
if ( !col_lvl.vy ){ meshes[k]->pos->vy = meshes[k]->body->position.vy; } // FIXME : Why the 15px offset ?
|
||
|
||
if ( !col_lvl.vz ){ meshes[k]->pos->vz = meshes[k]->body->position.vz; }
|
||
|
||
// If col with wall, change direction
|
||
|
||
if ( col_lvl.vx ) { meshes[k]->body->gForce.vx *= -1; }
|
||
|
||
if ( col_lvl.vy ) {
|
||
//~ meshes[k]->body->gForce.vy *= -1;
|
||
//~ meshes[k]->body->velocity.vy = 0;
|
||
//~ meshes[k]->body->position.vy = modelgnd_body.max.vy - meshes[k]->body->max.vy ;
|
||
}
|
||
|
||
if ( col_lvl.vz ) { meshes[k]->body->gForce.vz *= -1; }
|
||
|
||
// If col, reset velocity
|
||
|
||
//~ if ( col_lvl.vx ||
|
||
//~ col_lvl.vy ||
|
||
//~ col_lvl.vz
|
||
//~ ) {
|
||
//~ meshes[k]->body->velocity.vy = meshes[k]->body->velocity.vx = meshes[k]->body->velocity.vz = 0;
|
||
//~ //meshes[k]->body->velocity.vy = meshes[k]->body->velocity.vz = 0;
|
||
//~ }
|
||
|
||
ResolveCollision(&modelobject_body, &modelSphere_body);
|
||
//~ FntPrint("Col: %d\n", col_sphere.vx);
|
||
|
||
|
||
if ( !col_sphere.vx ) {
|
||
//~ ResolveCollision(&modelobject_body, &modelSphere_body);
|
||
//~ modelSphere_body.restitution = -meshes[k]->body->gForce.vx/2;
|
||
//~ modelSphere_body.velocity.vx -= 1;
|
||
}
|
||
|
||
//~ modelSphere_body.restitution = -meshes[k]->body->gForce.vx/2;
|
||
//~ meshes[k]->body->gForce.vx *= -1;
|
||
int w = ONE / ( (modelSphere_body.velocity.vx * ONE) / ((modelSphere_body.max.vx - modelSphere_body.min.vx)/2) ) * col_sphere.vx;
|
||
|
||
|
||
if (modelSphere_body.velocity.vx){
|
||
//~ modelSphere_rot.vz -= 10;
|
||
//angular velocity w = v/r
|
||
|
||
modelSphere_rot.vz += w;
|
||
|
||
if ( !col_sphere.vx & modelSphere_body.velocity.vx > 0 ) {
|
||
//~ ResolveCollision(&modelobject_body, &modelSphere_body);
|
||
//~ modelSphere_body.restitution = -meshes[k]->body->gForce.vx/2;
|
||
modelSphere_body.velocity.vx -= 1;
|
||
|
||
}
|
||
|
||
FntPrint("W: %d\n", w);
|
||
//~ FntPrint("G: %d\n", modelSphere_body.velocity.vx);
|
||
//~ FntPrint("F: %d\n", modelSphere_body.gForce.vx);
|
||
}
|
||
//~ if (modelSphere_body.inertia){
|
||
|
||
//~ modelSphere_body.velocity.vx =
|
||
//~ modelSphere_body.inertia --;
|
||
|
||
//~ }
|
||
|
||
//~ if (modelSphere_body.gForce.vx){
|
||
//~ modelSphere_body.gForce.vx -= 10;
|
||
//~ }
|
||
//~ if ( col_sphere.vz ) { meshes[k]->body->gForce.vz *= -1; }
|
||
//~ if ( col_sphere.vy ) { meshes[k]->body->gForce.vy *= -1; }
|
||
//~ ResolveCollision(&modelobject_body, &modelSphere_body);
|
||
|
||
//~ if (modelSphere_body.gForce.vx){modelSphere_body.gForce.vx -= 5;}
|
||
meshes[k]->pos->vx = meshes[k]->body->position.vx;
|
||
//~ meshes[k]->pos->vy = meshes[k]->body->position.vy;
|
||
meshes[k]->pos->vz = meshes[k]->body->position.vz;
|
||
|
||
//~ if(modelSphere_body.restitution > 0) {
|
||
//~ modelSphere_body.position.vx += lerp(modelSphere_body.restitution,modelSphere_body.position.vx,48);
|
||
//~ modelSphere_body.restitution += lerp(modelSphere_body.restitution,modelSphere_body.position.vx,48);
|
||
//~ }
|
||
meshes[k]->body->velocity.vy = meshes[k]->body->velocity.vx = meshes[k]->body->velocity.vz = 0;
|
||
|
||
}
|
||
}
|
||
//~ }
|
||
}
|
||
// Camera setup
|
||
|
||
|
||
// position of cam relative to actor
|
||
posToActor.vx = modelobject_pos.vx + camera.pos.vx;
|
||
posToActor.vz = modelobject_pos.vz + camera.pos.vz;
|
||
posToActor.vy = modelobject_pos.vy + camera.pos.vy;
|
||
|
||
// find dist between actor and cam
|
||
//~ dist = csqrt((posToActor.vx * posToActor.vx * 4096) + (posToActor.vz * posToActor.vz * 4096));
|
||
//~ dist = SquareRoot0( (posToActor.vx * posToActor.vx ) + (posToActor.vz * posToActor.vz) );
|
||
|
||
// find angles between cam and actor
|
||
//~ theta.vy = ratan2(posToActor.vx, posToActor.vz);
|
||
//~ theta.vx = 1024 - ratan2(dist, posToActor.vy);
|
||
|
||
//~ camera.rot.vy = - theta.vy;
|
||
// using csin/ccos, no need for theta
|
||
// camera.rot.vy = angle;
|
||
//~ camera.rot.vx = theta.vx;
|
||
|
||
//~ applyCamera(&camera);
|
||
|
||
// Clear the current OT
|
||
ClearOTagR(ot[db], OTLEN);
|
||
|
||
|
||
|
||
for (int k = 0; k < sizeof(meshes)/sizeof(meshes[0]); k++){
|
||
|
||
// Render the sample vector model
|
||
t=0;
|
||
|
||
// If rigidbdy, apply rot/transform matrix
|
||
if (*meshes[k]->isRigidBody){
|
||
|
||
//~ PushMatrix(); // Push current matrix on the stack (real slow -> dma transfer )
|
||
|
||
RotMatrix_gte(meshes[k]->rot, meshes[k]->mat); // Apply rotation matrix
|
||
|
||
TransMatrix(meshes[k]->mat, meshes[k]->pos); // Apply translation matrix
|
||
|
||
CompMatrix(&camera.mat, meshes[k]->mat, meshes[k]->mat); // Was using &PolyMatrix instead of meshes[k]->mat
|
||
|
||
SetRotMatrix(meshes[k]->mat); // Set default rotation matrix - Was using &PolyMatrix instead of meshes[k]->mat
|
||
SetTransMatrix(meshes[k]->mat); // Was using &PolyMatrix instead of meshes[k]->mat
|
||
|
||
}
|
||
|
||
|
||
|
||
// modelCube is a TMESH, len member == # vertices, but here it's # of triangle... So, for each tri * 3 vertices ...
|
||
for (i = 0; i < (meshes[k]->tmesh->len * 3); i += 3) {
|
||
|
||
poly = (POLY_GT3 *)nextpri;
|
||
|
||
SetPolyGT3(poly);
|
||
|
||
// Can use ?
|
||
//~ RotMeshPrimS_GCT3();
|
||
|
||
if (*meshes[k]->isPrism){
|
||
|
||
// Use current DRAWENV clip as TPAGE
|
||
((POLY_GT3 *)poly)->tpage = getTPage(meshes[k]->tim->mode&0x3, 0,
|
||
draw[db].clip.x,
|
||
draw[db].clip.y
|
||
);
|
||
|
||
// Use projected coordinates (results from RotAverage...) as UV coords and clamp them to 0-255,0-224
|
||
setUV3(poly, (poly->x0 < 0? 0 : poly->x0 > 255? 255 : poly->x0),
|
||
(poly->y0 < 0? 0 : poly->y0 > 224? 224 : poly->y0),
|
||
(poly->x1 < 0? 0 : poly->x1 > 255? 255 : poly->x1),
|
||
(poly->y1 < 0? 0 : poly->y1 > 224? 224 : poly->y1),
|
||
(poly->x2 < 0? 0 : poly->x2 > 255? 255 : poly->x2),
|
||
(poly->y2 < 0? 0 : poly->y2 > 224? 224 : poly->y2)
|
||
);
|
||
|
||
|
||
} else {
|
||
|
||
// Use regular TPAGE
|
||
((POLY_GT3 *)poly)->tpage = getTPage(meshes[k]->tim->mode&0x3, 0,
|
||
meshes[k]->tim->prect->x,
|
||
meshes[k]->tim->prect->y
|
||
);
|
||
|
||
// Use model UV coordinates
|
||
setUV3(poly, meshes[k]->tmesh->u[i].vx , meshes[k]->tmesh->u[i].vy + meshes[k]->tim->prect->y,
|
||
meshes[k]->tmesh->u[i+1].vx, meshes[k]->tmesh->u[i+1].vy + meshes[k]->tim->prect->y,
|
||
meshes[k]->tmesh->u[i+2].vx, meshes[k]->tmesh->u[i+2].vy + meshes[k]->tim->prect->y);
|
||
|
||
|
||
}
|
||
|
||
// If Vertex Anim flag
|
||
if (*meshes[k]->isAnim){
|
||
|
||
// FIXME : SLERP VERTEX ANIM
|
||
|
||
//~ SVECTOR a,b,c = {0,0,0,0};
|
||
|
||
//~ for (int f = 0; f < 5; f++){
|
||
//~ interpCache[f] = SVlerp( (SVECTOR) meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t]], (SVECTOR) meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t]], 2048);
|
||
//~ interpCache[f+1] = SVlerp( (SVECTOR) meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t]], (SVECTOR) meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t]], 2048);
|
||
//~ interpCache[f+2] = SVlerp( (SVECTOR) meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t]], (SVECTOR) meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t]], 2048);
|
||
|
||
//~ }
|
||
|
||
//~ SVECTOR start = meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t]];
|
||
|
||
//~ SVECTOR end = meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t]];
|
||
//~ if (a.vx != 0 && b.vx != 0 && c.vx != 0){
|
||
//~ SVECTOR d,e,f;
|
||
|
||
//~ d = SVlerp( (SVECTOR) a, (SVECTOR) meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t]], 2048);
|
||
//~ e = SVlerp( (SVECTOR) b, (SVECTOR) meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t+1]], 2048);
|
||
//~ f = SVlerp( (SVECTOR) c, (SVECTOR) meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t+2]], 2048);
|
||
|
||
//~ addVector( &a , &d );
|
||
//~ addVector( &b , &e );
|
||
//~ addVector( &c , &f );
|
||
//~ } else {
|
||
//~ a = (SVECTOR) meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t]];
|
||
//~ b = (SVECTOR) meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t+1]];
|
||
//~ c = (SVECTOR) meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t+2]];
|
||
//~ }
|
||
//~ a.vx = lerp(start.vx, end.vx, 2048);
|
||
//~ a.vy = lerp(meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t]].vy, meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t]].vy, 2048);
|
||
//~ a.vz = lerp(meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t]].vz, meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t]].vz, 2048);
|
||
|
||
//~ b = meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t+1]];
|
||
//~ c = meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t+2]];
|
||
//~ SVlerp(meshes[k]->anim->data[ 0 * modelCylindre_anim.nvert + meshes[k]->index[t]], meshes[k]->anim->data[ 10 * modelCylindre_anim.nvert + meshes[k]->index[t]],64, a);
|
||
//~ SVlerp(meshes[k]->anim->data[ 0 * modelCylindre_anim.nvert + meshes[k]->index[t+1]], meshes[k]->anim->data[ 10 * modelCylindre_anim.nvert + meshes[k]->index[t+1]],64, b);
|
||
//~ SVlerp(meshes[k]->anim->data[ 0 * modelCylindre_anim.nvert + meshes[k]->index[t+2]], meshes[k]->anim->data[ 10 * modelCylindre_anim.nvert + meshes[k]->index[t+2]],64, c);
|
||
|
||
//~ FntPrint("%d %d %d\n", meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t]].vz, meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t]].vz, a.vz);
|
||
|
||
//~ FntPrint("%d %d %d\n", c.vx, c.vy, c.vz);
|
||
|
||
//~ FntPrint("%d %d %d\n", a.vx, b.vx, c.vx);
|
||
|
||
// Rotate, translate, and project the vectors and output the results into a primitive
|
||
|
||
//~ OTz = RotTransPers(&meshes[k]->tmesh->v[meshes[k]->index[t]] , (long*)&poly->x0, meshes[k]->p, &Flag);
|
||
//~ OTz += RotTransPers(&meshes[k]->tmesh->v[meshes[k]->index[t+1]], (long*)&poly->x1, meshes[k]->p, &Flag);
|
||
//~ OTz += RotTransPers(&meshes[k]->tmesh->v[meshes[k]->index[t+2]], (long*)&poly->x2, meshes[k]->p, &Flag);
|
||
|
||
// Use anim vertex's positions
|
||
|
||
OTz = RotAverage3(
|
||
&meshes[k]->anim->data[ atime%19 * modelCylindre_anim.nvert + meshes[k]->index[t]],
|
||
&meshes[k]->anim->data[ atime%19 * modelCylindre_anim.nvert + meshes[k]->index[t+1]],
|
||
&meshes[k]->anim->data[ atime%19 * modelCylindre_anim.nvert + meshes[k]->index[t+2]],
|
||
(long*)&poly->x0, (long*)&poly->x1, (long*)&poly->x2,
|
||
meshes[k]->p,
|
||
&Flag
|
||
);
|
||
|
||
|
||
} else {
|
||
|
||
// Use model's regular vertex pos
|
||
OTz = RotAverage3(
|
||
&meshes[k]->tmesh->v[meshes[k]->index[t]],
|
||
&meshes[k]->tmesh->v[meshes[k]->index[t+1]],
|
||
&meshes[k]->tmesh->v[meshes[k]->index[t+2]],
|
||
(long*)&poly->x0, (long*)&poly->x1, (long*)&poly->x2,
|
||
meshes[k]->p,
|
||
&Flag
|
||
);
|
||
}
|
||
|
||
// FIXME : Polygon subdiv
|
||
|
||
//~ OTc = OTz>>4;
|
||
|
||
//~ if (OTc < 15) {
|
||
|
||
//~ if (OTc > 5) div.ndiv = 1; else div.ndiv = 2;
|
||
|
||
//~ DivideGT3(
|
||
//~ // Vertex coord
|
||
//~ &meshes[k]->tmesh->v[meshes[k]->index[t]],
|
||
//~ &meshes[k]->tmesh->v[meshes[k]->index[t+1]],
|
||
//~ &meshes[k]->tmesh->v[meshes[k]->index[t+2]],
|
||
//~ // UV coord
|
||
//~ meshes[k]->tmesh->u[i],
|
||
//~ meshes[k]->tmesh->u[i+1],
|
||
//~ meshes[k]->tmesh->u[i+2],
|
||
|
||
//~ // Color
|
||
//~ meshes[k]->tmesh->c[i],
|
||
//~ meshes[k]->tmesh->c[i+1],
|
||
//~ meshes[k]->tmesh->c[i+2],
|
||
|
||
//~ // Gpu packet
|
||
//~ poly,
|
||
//~ &ot[db][OTz],
|
||
//~ &div);
|
||
|
||
//~ // Increment primitive list pointer
|
||
//~ nextpri += ( (sizeof(POLY_GT4) + 2) / 3 ) * (( 1 << ( div.ndiv )) << ( div.ndiv ));
|
||
//NumPrims += ((1<<(div.ndiv))<<(div.ndiv));
|
||
|
||
//~ }
|
||
|
||
// Interpolate a primary color vector and far color
|
||
|
||
// If vertex anim has updated normals
|
||
|
||
//~ if (*meshes[k]->isAnim){
|
||
//~ NormalColorDpq(&meshes[k]->anim->normals[ atime%19 * modelCylindre_anim.nvert + meshes[k]->index[t]], &meshes[k]->tmesh->c[meshes[k]->index[t]], *meshes[k]->p, &outCol);
|
||
//~ NormalColorDpq(&meshes[k]->anim->normals[ atime%19 * modelCylindre_anim.nvert + meshes[k]->index[t+1]], &meshes[k]->tmesh->c[meshes[k]->index[t+1]], *meshes[k]->p, &outCol1);
|
||
//~ NormalColorDpq(&meshes[k]->anim->normals[ atime%19 * modelCylindre_anim.nvert + meshes[k]->index[t+2]], &meshes[k]->tmesh->c[meshes[k]->index[t+2]], *meshes[k]->p, &outCol2);
|
||
//~ } else {
|
||
|
||
CVECTOR outCol ={0,0,0,0};
|
||
CVECTOR outCol1 ={0,0,0,0};
|
||
CVECTOR outCol2 ={0,0,0,0};
|
||
|
||
NormalColorDpq(&meshes[k]->tmesh->n[meshes[k]->index[t]] , &meshes[k]->tmesh->c[meshes[k]->index[t]], *meshes[k]->p, &outCol);
|
||
NormalColorDpq(&meshes[k]->tmesh->n[meshes[k]->index[t+1]], &meshes[k]->tmesh->c[meshes[k]->index[t+1]], *meshes[k]->p, &outCol1);
|
||
NormalColorDpq(&meshes[k]->tmesh->n[meshes[k]->index[t+2]], &meshes[k]->tmesh->c[meshes[k]->index[t+2]], *meshes[k]->p, &outCol2);
|
||
//~ }
|
||
|
||
// Other methods
|
||
|
||
//~ NormalColorDpq3(&meshes[k]->tmesh->n[i],
|
||
//~ &meshes[k]->tmesh->n[i+1],
|
||
//~ &meshes[k]->tmesh->n[i+2],
|
||
//~ &meshes[k]->tmesh->c[i],
|
||
//~ *meshes[k]->p,
|
||
//~ &outCol,&outCol1,&outCol2
|
||
//~ );
|
||
|
||
//~ DpqColor3(&meshes[k]->tmesh->c[i],
|
||
//~ &meshes[k]->tmesh->c[i+1],
|
||
//~ &meshes[k]->tmesh->c[i+2],
|
||
//~ *meshes[k]->p,
|
||
//~ &outCol,&outCol1,&outCol2
|
||
//~ );
|
||
|
||
if (*meshes[k]->isPrism){
|
||
|
||
// Use un-interpolated (i.e: no light, no fog) colors
|
||
setRGB0(poly, meshes[k]->tmesh->c[i].r, meshes[k]->tmesh->c[i+1].g, meshes[k]->tmesh->c[i+2].b);
|
||
setRGB1(poly, meshes[k]->tmesh->c[i+1].r, meshes[k]->tmesh->c[i+1].g, meshes[k]->tmesh->c[i+1].b);
|
||
setRGB2(poly, meshes[k]->tmesh->c[i+2].r, meshes[k]->tmesh->c[i+2].g, meshes[k]->tmesh->c[i+2].b);
|
||
|
||
} else {
|
||
|
||
setRGB0(poly, outCol.r, outCol.g , outCol.b);
|
||
setRGB1(poly, outCol1.r, outCol1.g, outCol1.b);
|
||
setRGB2(poly, outCol2.r, outCol2.g, outCol2.b);
|
||
}
|
||
|
||
// Sort the primitive into the OT
|
||
//~ OTz /= 3;
|
||
|
||
// cliptest3((short *)&meshes[k]->tmesh->v[meshes[k]->index[t]])
|
||
|
||
//~ if ((OTz > 0) && (OTz < OTLEN) && (*meshes[k]->p < 2048)){
|
||
if ((OTz > 0) && (OTz < OTLEN) && (*meshes[k]->p < 4096)){
|
||
AddPrim(&ot[db][OTz-2], poly); // OTz - 2
|
||
}
|
||
|
||
nextpri += sizeof(POLY_GT3);
|
||
|
||
t+=3;
|
||
|
||
//~ if (*meshes[k]->isRigidBody){
|
||
//~ PopMatrix(); // Pull previous matrix from stack (slow)
|
||
//~ }
|
||
|
||
}
|
||
|
||
// Find and apply light rotation matrix
|
||
RotMatrix(&lgtang, &rotlgt);
|
||
MulMatrix0(&lgtmat, &rotlgt, &light);
|
||
SetLightMatrix(&light);
|
||
|
||
applyCamera(&camera);
|
||
|
||
}
|
||
|
||
//~ FntPrint("ColSphere: %d\n", (modelobject_body.position.vy + modelobject_body.max.vy) - (modelSphere_body.position.vy + modelSphere_body.min.vy) );
|
||
//~ FntPrint("ColSphere: %d\n", (modelSphere_body.position.vy + modelSphere_body.max.vy) - (modelobject_body.position.vy + modelobject_body.min.vy) );
|
||
//~ FntPrint("Col %d\n", col_sphere.vy );
|
||
|
||
FntPrint("Obj: %d,%d,%d\n",modelobject_body.velocity.vx,modelobject_body.velocity.vy,modelobject_body.velocity.vz);
|
||
FntPrint("Sph: %d,%d,%d\n",modelSphere_body.velocity.vx,modelSphere_body.velocity.vy,modelSphere_body.velocity.vz);
|
||
|
||
FntPrint("%d, %d\n",modelSphere_body.restitution, modelobject_pos.vx);
|
||
|
||
//~ FntPrint("Time : %d %d dt :%d\n",time, atime, dt);
|
||
//~ FntPrint("Tricount: %d OTz: %d\nOTc: %d, p: %d\n",triCount, OTz, OTc, *meshes[2]->p);
|
||
|
||
//~ FntPrint("Sphr : %4d %4d %4d\n", modelSphere_body.gForce.vx, modelSphere_body.gForce.vy, modelSphere_body.gForce.vz);
|
||
|
||
//~ FntPrint("isPrism: %d\n", *meshobject.isPrism);
|
||
|
||
//~ FntPrint("L1: %d %d %d\n", light.m[0][0],light.m[0][1],light.m[0][2]);
|
||
//~ FntPrint("L2: %d %d %d\n", light.m[1][0],light.m[1][1],light.m[1][2]);
|
||
//~ FntPrint("L3: %d %d %d\n", light.m[2][0],light.m[2][1],light.m[2][2]);
|
||
|
||
FntFlush(-1);
|
||
|
||
display();
|
||
|
||
//~ frame = VSync(-1);
|
||
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
void init(){
|
||
// Reset the GPU before doing anything and the controller
|
||
PadInit(0);
|
||
ResetGraph(0);
|
||
|
||
// Initialize and setup the GTE
|
||
InitGeom();
|
||
SetGeomOffset(CENTERX, CENTERY); // x, y offset
|
||
SetGeomScreen(CENTERX); // Distance between eye and screen
|
||
|
||
// Set the display and draw environments
|
||
SetDefDispEnv(&disp[0], 0, 0 , SCREENXRES, SCREENYRES);
|
||
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
|
||
|
||
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
|
||
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
|
||
|
||
if (VMODE)
|
||
{
|
||
SetVideoMode(MODE_PAL);
|
||
disp[0].screen.y += 8;
|
||
disp[1].screen.y += 8;
|
||
}
|
||
|
||
setRGB0(&draw[0], BGc.r, BGc.g, BGc.b);
|
||
setRGB0(&draw[1], BGc.r, BGc.g, BGc.b);
|
||
|
||
draw[0].isbg = 1;
|
||
draw[1].isbg = 1;
|
||
|
||
PutDispEnv(&disp[db]);
|
||
PutDrawEnv(&draw[db]);
|
||
|
||
// Init font system
|
||
FntLoad(960, 0);
|
||
FntOpen(16, 180, 240, 96, 0, 512);
|
||
|
||
}
|
||
|
||
void display(void){
|
||
|
||
DrawSync(0);
|
||
vs = VSync(0);
|
||
|
||
PutDispEnv(&disp[db]);
|
||
PutDrawEnv(&draw[db]);
|
||
|
||
SetDispMask(1);
|
||
|
||
DrawOTag(ot[db] + OTLEN - 1);
|
||
|
||
db = !db;
|
||
|
||
nextpri = primbuff[db];
|
||
|
||
|
||
}
|
||
|
||
// Nic's function
|
||
void getCameraXZ(int * x, int * z, int actorX, int actorZ, int angle, int distance) {
|
||
|
||
|
||
// Using Nic's Costable : https://github.com/grumpycoders/Balau/blob/master/tests/test-Handles.cc#L20-L102
|
||
// https://godbolt.org/z/q6cMcj
|
||
|
||
*x = (actorX * ONE) + (distance * nsin(angle));
|
||
*z = (actorZ * ONE) - (distance * ncos(angle));
|
||
|
||
//~ *x = (actorX * ONE) + (distance * csin(angle));
|
||
//~ *z = (actorZ * ONE) - (distance * ccos(angle)); // Z is pointing away from the eye
|
||
|
||
// @soapy https://discord.com/channels/642647820683444236/663664210525290507/797188403748929547
|
||
//~ *x = (actorX * ONE) + (distance * rcossin_tbl[(angle & 0xFFFU) * 2]);
|
||
//~ *z = (actorZ * ONE) - (distance * rcossin_tbl[(angle & 0xFFFU) * 2 + 1]); // Z is pointing away from the eye
|
||
|
||
// Using precalculated psin and pcos
|
||
//~ *x = (actorX * ONE) + (distance * psin[angle]);
|
||
//~ *z = (actorZ * ONE) - (distance * pcos[angle]); // Z is pointing away from the eye
|
||
}
|
||
// @Will : you might want to use sin/cos to move the camera in a circle but you could do that by moving it along it’s tangent and then clamping the distance
|
||
|
||
void applyCamera(CAMERA * cam){
|
||
VECTOR vec; // Vector that holds the output values of the following instructions
|
||
|
||
RotMatrix_gte(&cam->rot, &cam->mat); // Convert rotation angle in psx units (360° == 4096) to rotation matrix)
|
||
|
||
ApplyMatrixLV(&cam->mat, &cam->pos, &vec); // Multiply matrix by vector pos and output to vec
|
||
|
||
TransMatrix(&cam->mat, &vec); // Apply transform vector
|
||
|
||
SetRotMatrix(&cam->mat); // Set Rotation matrix
|
||
SetTransMatrix(&cam->mat); // Set Transform matrix
|
||
|
||
|
||
}
|
||
|
||
void setCameraPos(VECTOR pos, SVECTOR rot){
|
||
camera.pos = pos;
|
||
camera.rot = rot;
|
||
|
||
};
|
||
|
||
void LoadTexture(u_long * tim, TIM_IMAGE * tparam){ // This part is from Lameguy64's tutorial series : lameguy64.net/svn/pstutorials/chapter1/3-textures.html login/pw: annoyingmous
|
||
OpenTIM(tim); // Open the tim binary data, feed it the address of the data in memory
|
||
ReadTIM(tparam); // This read the header of the TIM data and sets the corresponding members of the TIM_IMAGE structure
|
||
|
||
LoadImage(tparam->prect, tparam->paddr); // Transfer the data from memory to VRAM at position prect.x, prect.y
|
||
DrawSync(0); // Wait for the drawing to end
|
||
|
||
if (tparam->mode & 0x8){ // check 4th bit // If 4th bit == 1, TIM has a CLUT
|
||
LoadImage(tparam->crect, tparam->caddr); // Load it to VRAM at position crect.x, crect.y
|
||
DrawSync(0); // Wait for drawing to end
|
||
}
|
||
|
||
}
|
||
|
||
|
||
int lerp(int start, int end, int factor){
|
||
// lerp interpolated cam movement
|
||
// InBetween = Value 1 + ( ( Value2 - Value1 ) * lerpValue ) ;
|
||
// lerpValue should be a float between 0 and 1.
|
||
// This'll have to be a fixed point value between 0-4096
|
||
// easeOut
|
||
//~ return ( ( start ) + ( end - start ) * factor ) / 4096;
|
||
// easeIn
|
||
return ( ( start ) + ( end - start ) * factor ) / 4096;
|
||
|
||
|
||
// kinda linear
|
||
//~ return (( start ) + ( end - start )) * factor / 4096;
|
||
|
||
}
|
||
|
||
SVECTOR SVlerp(SVECTOR start, SVECTOR end, int factor){
|
||
SVECTOR output = {0,0,0,0};
|
||
output.vx = lerp(start.vx, end.vx, factor);
|
||
output.vy = lerp(start.vy, end.vy, factor);
|
||
output.vz = lerp(start.vz, end.vz, factor);
|
||
return output;
|
||
}
|
||
|
||
VECTOR getIntCollision(BODY one, BODY two){
|
||
|
||
VECTOR d1, d2, col;
|
||
|
||
d1.vx = (one.position.vx - one.max.vx) - (two.position.vx + two.min.vx);
|
||
d1.vy = (one.position.vy + one.min.vy) - (two.position.vy + two.min.vy);
|
||
d1.vz = (one.position.vz - one.max.vz) - (two.position.vz + two.min.vz);
|
||
|
||
d2.vx = (two.position.vx + two.max.vx) - (one.position.vx + one.max.vx);
|
||
d2.vy = (two.position.vy + two.max.vy) - (one.position.vy + one.max.vy);
|
||
d2.vz = (two.position.vz + two.max.vz) - (one.position.vz + one.max.vz);
|
||
|
||
col.vx = !(d1.vx > 0 && d2.vx > 0);
|
||
col.vy = !(d1.vy > 0 && d2.vy > 0);
|
||
col.vz = !(d1.vz > 0 && d2.vz > 0);
|
||
|
||
return col;
|
||
|
||
}
|
||
|
||
VECTOR getExtCollision(BODY one, BODY two){
|
||
|
||
VECTOR d1, d2, col;
|
||
|
||
d1.vx = (one.position.vx + one.max.vx) - (two.position.vx + two.min.vx);
|
||
d1.vy = (one.position.vy + one.max.vy) - (two.position.vy + two.min.vy);
|
||
d1.vz = (one.position.vz + one.max.vz) - (two.position.vz + two.min.vz);
|
||
|
||
d2.vx = (two.position.vx + two.max.vx) - (one.position.vx + one.min.vx);
|
||
d2.vy = (two.position.vy + two.max.vy) - (one.position.vy + one.min.vy);
|
||
d2.vz = (two.position.vz + two.max.vz) - (one.position.vz + one.min.vz);
|
||
|
||
col.vx = d1.vx > 0 && d2.vx > 0;
|
||
col.vy = d1.vy > 0 && d2.vy > 0;
|
||
col.vz = d1.vz > 0 && d2.vz > 0;
|
||
|
||
return col;
|
||
|
||
}
|
||
|
||
void applyAcceleration(BODY * actor){
|
||
|
||
short dt = 1;
|
||
|
||
VECTOR acceleration = {actor->invMass * actor->gForce.vx , actor->invMass * actor->gForce.vy, actor->invMass * actor->gForce.vz};
|
||
|
||
actor->velocity.vx += (acceleration.vx * dt) / 4096;
|
||
actor->velocity.vy += (acceleration.vy * dt) / 4096;
|
||
actor->velocity.vz += (acceleration.vz * dt) / 4096;
|
||
|
||
actor->position.vx += (actor->velocity.vx * dt);
|
||
actor->position.vy += (actor->velocity.vy * dt);
|
||
actor->position.vz += (actor->velocity.vz * dt);
|
||
|
||
}
|
||
|
||
//~ // https://gamedevelopment.tutsplus.com/tutorials/how-to-create-a-custom-2d-physics-engine-the-basics-and-impulse-resolution--gamedev-6331
|
||
void ResolveCollision( BODY * one, BODY * two ){
|
||
|
||
// Calculate relative velocity
|
||
VECTOR rv = { subVector( one->velocity, two->velocity) };
|
||
|
||
//~ FntPrint("rv: %d, %d, %d\n", rv.vx,rv.vy,rv.vz);
|
||
|
||
// Collision normal
|
||
VECTOR normal = { subVector( two->position, one->position ) };
|
||
|
||
// Normalize collision normal
|
||
normal.vx = normal.vx > 32 ? 1 : normal.vx < -32 ? -1 : 0 ;
|
||
normal.vy = normal.vy > 256 ? 1 : normal.vy < -256 ? -1 : 0 ;
|
||
normal.vz = normal.vz > 32 ? 1 : normal.vz < -32 ? -1 : 0 ;
|
||
|
||
//~ FntPrint("norm: %d, %d, %d\n", normal.vx,normal.vy,normal.vz);
|
||
|
||
// Calculate relative velocity in terms of the normal direction
|
||
long velAlongNormal = dotProduct( rv, normal );
|
||
|
||
//~ FntPrint("velN: %d\n", velAlongNormal);
|
||
|
||
// Do not resolve if velocities are separating
|
||
if(velAlongNormal > 0)
|
||
return;
|
||
|
||
// Calculate restitution
|
||
long e = min( one->restitution, two->restitution );
|
||
|
||
//~ FntPrint("e: %d\n", e);
|
||
|
||
//~ // Calculate impulse scalar
|
||
long j = -(1 + e) * velAlongNormal * ONE;
|
||
j /= one->invMass + two->invMass;
|
||
//~ j /= ONE;
|
||
|
||
//~ FntPrint("j: %d\n", j);
|
||
|
||
// Apply impulse
|
||
applyVector(&normal, j, j, j, *=);
|
||
|
||
//~ FntPrint("Cnormal %d %d %d\n",normal.vx,normal.vy,normal.vz);
|
||
|
||
VECTOR velOne = normal;
|
||
VECTOR velTwo = normal;
|
||
|
||
applyVector(&velOne,one->invMass,one->invMass,one->invMass, *=);
|
||
applyVector(&velTwo,two->invMass,two->invMass,two->invMass, *=);
|
||
|
||
//~ FntPrint("V1 %d %d %d\n", velOne.vx/4096/4096,velOne.vy/4096/4096,velOne.vz/4096/4096);
|
||
//~ FntPrint("V2 %d %d %d\n", velTwo.vx/4096/4096,velTwo.vy/4096/4096,velTwo.vz/4096/4096);
|
||
|
||
applyVector(&one->velocity, velOne.vx/4096/4096, velOne.vy/4096/4096, velOne.vz/4096/4096, -=);
|
||
applyVector(&two->velocity, velTwo.vx/4096/4096, velTwo.vy/4096/4096, velTwo.vz/4096/4096, +=);
|
||
|
||
//~ FntPrint("V1 %d %d %d\n", velOne.vx/4096/4096,velOne.vy/4096/4096,velOne.vz/4096/4096);
|
||
//~ FntPrint("V2 %d %d %d\n", velTwo.vx/4096/4096,velTwo.vy/4096/4096,velTwo.vz/4096/4096);
|
||
|
||
|
||
}
|
||
|
||
|
||
|
||
// A few notes on the following code :
|
||
|
||
int ncos(unsigned int t) {
|
||
t %= DC_2PI;
|
||
int r;
|
||
|
||
if (t < DC_PI2) {
|
||
r = m_cosTable[t];
|
||
} else if (t < DC_PI) {
|
||
r = -m_cosTable[DC_PI - 1 - t];
|
||
} else if (t < (DC_PI + DC_PI2)) {
|
||
r = -m_cosTable[t - DC_PI];
|
||
} else {
|
||
r = m_cosTable[DC_2PI - 1 - t];
|
||
};
|
||
|
||
return r >> 12;
|
||
};
|
||
|
||
// sin(x) = cos(x - pi / 2)
|
||
int nsin(unsigned int t) {
|
||
t %= DC_2PI;
|
||
|
||
if (t < DC_PI2){
|
||
return ncos(t + DC_2PI - DC_PI2);
|
||
};
|
||
return ncos(t - DC_PI2);
|
||
};
|
||
|
||
// f(n) = cos(n * 2pi / 2048) <- 2048 is == DC_2PI value
|
||
// f(n) = 2 * f(1) * f(n - 1) - f(n - 2)
|
||
void generateTable(void){
|
||
|
||
m_cosTable[0] = 16777216; // 2^24 * cos(0 * 2pi / 2048) => 2^24 * 1 = 2^24 : here, 2^24 defines the precision we want after the decimal point
|
||
static const long long C = 16777137; // 2^24 * cos(1 * 2pi / 2048) = C = f(1);
|
||
m_cosTable[1] = C;
|
||
|
||
for (int i = 2; i < 512; i++){
|
||
m_cosTable[i] = ((C * m_cosTable[i - 1]) >> 23) - m_cosTable[i - 2];
|
||
|
||
m_cosTable[511] = 0;
|
||
}
|
||
};
|
||
|
||
// https://github.com/Arsunt/TR2Main/blob/411cacb35914c616cb7960c0e677e00c71c7ee88/3dsystem/phd_math.cpp#L432
|
||
int patan(int x, int y){
|
||
int result;
|
||
int swapBuf;
|
||
int flags = 0;
|
||
|
||
// if either x or y are 0, return 0
|
||
if( x == 0 && y == 0){
|
||
return 0;
|
||
}
|
||
|
||
if( x < 0 ) {
|
||
flags |= 4;
|
||
x = -x;
|
||
|
||
}
|
||
|
||
if ( y < 0 ) {
|
||
flags |= 2;
|
||
y = -y;
|
||
}
|
||
|
||
if ( y > x ) {
|
||
flags |= 1;
|
||
SWAP(x, y ,swapBuf);
|
||
}
|
||
|
||
result = AtanBaseTable[flags] + AtanAngleTable[0x800 * y / x];
|
||
if ( result < 0 ){
|
||
result = -result;
|
||
|
||
return result;
|
||
|
||
}
|
||
|
||
}
|
||
|
||
u_int psqrt(u_int n){
|
||
u_int result = 0;
|
||
u_int base = 0x40000000;
|
||
u_int basedResult;
|
||
|
||
for( ; base != 0; base >>= 2 ) {
|
||
for( ; base != 0; base >>= 2 ) {
|
||
basedResult = base + result;
|
||
result >>= 1;
|
||
|
||
if( basedResult > n ) {
|
||
break;
|
||
}
|
||
|
||
n -= basedResult;
|
||
result |= base;
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
|
||
int cliptest3(short *v1)
|
||
{
|
||
|
||
if( v1[0]<0 && v1[2]<0 && v1[4]<0 ) return 0;
|
||
if( v1[1]<0 && v1[3]<0 && v1[5]<0 ) return 0;
|
||
|
||
if( v1[0] > SCREENXRES && v1[2] > SCREENXRES && v1[4] > SCREENXRES) return 0;
|
||
if( v1[1] > SCREENYRES && v1[3] > SCREENYRES && v1[5] > SCREENYRES) return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
void callback(){
|
||
|
||
int pad = PadRead(0);
|
||
|
||
if (pad & PADRright && !pressed){
|
||
if(camMode < 4){
|
||
camMode += 1;
|
||
} else {
|
||
setCameraPos(camStartPos.pos, camStartPos.rot);
|
||
camPath.cursor = 0;
|
||
camMode = 0;
|
||
}
|
||
pressed = 1;
|
||
}
|
||
|
||
if (!(pad & PADRright)){
|
||
pressed = 0;
|
||
}
|
||
|
||
if (pad & PADRdown){
|
||
lgtang.vy += 32;
|
||
//~ lgtang.vx += 32;
|
||
}
|
||
if (pad & PADRup){
|
||
lgtang.vz += 32;
|
||
//~ lgtang.vx += 32;
|
||
}
|
||
//~ RotMatrix(&lgtang, &rotlgt);
|
||
//~ MulMatrix(&rotlgt, &rottrans);
|
||
|
||
if (pad & PADLdown && !pressed){
|
||
if (*meshobject.isPrism){
|
||
*meshobject.isPrism = 0;
|
||
} else {
|
||
*meshobject.isPrism = 1;
|
||
}
|
||
pressed = 1;
|
||
}
|
||
if (!pad & PADLdown){
|
||
pressed = 0;
|
||
}
|
||
|
||
}
|