55 lines
2.6 KiB
C
55 lines
2.6 KiB
C
#include <space.h>
|
|
|
|
// From 'psyq/addons/graphics/ZIMEN/CLIP.C'
|
|
void worldToScreen( VECTOR * worldPos, VECTOR * screenPos ) {
|
|
int distToScreen; // corresponds to FOV
|
|
MATRIX curRot; // current rotation matrix
|
|
// Get current matrix and projection */
|
|
distToScreen = ReadGeomScreen();
|
|
ReadRotMatrix(&curRot);
|
|
// Get Rotation, Translation coordinates, apply perspective correction
|
|
// Muliply world coordinates vector by current rotation matrix, store in screenPos
|
|
ApplyMatrixLV(&curRot, worldPos, screenPos);
|
|
// Get world translation vectors from rot and add to screenPos vx, vy, vz
|
|
applyVector(screenPos, curRot.t[0], curRot.t[1], curRot.t[2], +=);
|
|
// Correct perspective
|
|
//~ screenPos -> vx = screenPos -> vx * distToScreen / ( screenPos -> vz + 1 ) ; // Add 1 to avoid division by 0
|
|
//~ screenPos -> vy = screenPos -> vy * distToScreen / ( screenPos -> vz + 1 ) ;
|
|
//~ screenPos -> vz = distToScreen ;
|
|
};
|
|
void screenToWorld( VECTOR * screenPos, VECTOR * worldPos ) {
|
|
int distToScreen; // corresponds to FOV
|
|
MATRIX curRot, invRot; // current rotation matrix, transpose matrix
|
|
VECTOR Trans; // working translation vector
|
|
// Get current matrix and projection
|
|
distToScreen = ReadGeomScreen();
|
|
ReadRotMatrix( &curRot );
|
|
PushMatrix(); // Store matrix on the stack (slow!)
|
|
//// worldTrans = invRot * (screenPos - Rot.t)
|
|
// Get world translation
|
|
Trans.vx = screenPos->vx - curRot.t[0]; // Substract world translation from screenpos
|
|
Trans.vy = screenPos->vy - curRot.t[1];
|
|
Trans.vz = screenPos->vz - curRot.t[2];
|
|
// We want the inverse of the current rotation matrix.
|
|
//
|
|
// Inverse matrix : M^-1 = 1 / detM * T(M)
|
|
// We know that the determinant of a rotation matrix is 1, thus:
|
|
// M^-1 = T(M)
|
|
//
|
|
// Get transpose of current rotation matrix
|
|
// > The transpose of a matrix is a new matrix whose rows are the columns of the original.
|
|
// https://www.quora.com/What-is-the-geometric-interpretation-of-the-transpose-of-a-matrix
|
|
TransposeMatrix( &curRot, &invRot );
|
|
// Multiply the transpose of current rotation matrix by the current translation vector
|
|
ApplyMatrixLV( &invRot, &Trans, worldPos );
|
|
// Get original rotation matrix back
|
|
PopMatrix();
|
|
};
|
|
int cliptest3( short *v1 ) {
|
|
if( v1[0]<0 && v1[2]<0 && v1[4]<0 ) return 0;
|
|
if( v1[1]<0 && v1[3]<0 && v1[5]<0 ) return 0;
|
|
if( v1[0] > SCREENXRES && v1[2] > SCREENXRES && v1[4] > SCREENXRES) return 0;
|
|
if( v1[1] > SCREENYRES && v1[3] > SCREENYRES && v1[5] > SCREENYRES) return 0;
|
|
return 1;
|
|
};
|