2022-08-14 08:03:07 +02:00
import bge # Blender Game Engine (UPBGE)
import aud # Sounds
import threading # Multithreading
import trace
import sys
import time
import math
import mathutils
import random
###############################################################################
2022-08-19 15:43:20 +02:00
# rp_lib.py
2022-08-14 08:03:07 +02:00
# @title: Bibliothèque du Robot Ropy (rp_*)
# @project: Ropy (Blender-EduTech)
# @lang: fr
# @authors: Philippe Roy <philippe.roy@ac-grenoble.fr>
# @copyright: Copyright (C) 2020-2022 Philippe Roy
# @license: GNU GPL
#
# Bibliothèque des actions du robot
# Bibliothèque pour la construction des murs
#
# Ropy est destiné à la découverte de la programmation procédurale et du language Python.
# A travers plusieurs challenges, donc de manière graduée, les élèves vont apprendre à manipuler les structures algorithmiques de base et à les coder en Python.
#
###############################################################################
scene = bge . logic . getCurrentScene ( )
# Colors
purple = ( 0.202 , 0.114 , 0.521 , 1 )
turquoise = ( 0.051 , 0.270 , 0.279 , 1 )
magenta = ( 0.799 , 0.005 , 0.314 , 1 )
orange = ( 0.799 , 0.130 , 0.063 , 1 )
yellow = ( 0.799 , 0.617 , 0.021 , 1 )
green = ( 0.246 , 0.687 , 0.078 , 1 )
red = ( 0.799 , 0.031 , 0.038 , 1 )
blue = ( 0.127 , 0.456 , 1.000 , 1 )
black = ( 0 , 0 , 0 , 1 )
color_text = ( 0 , 0 , 0 , 1 ) # Noir
color_text_red = ( 0.799 , 0.031 , 0.038 , 1 )
color_text_orange = ( 0.799 , 0.176 , 0.054 , 1 )
color_text_yellow = ( 0.799 , 0.617 , 0.021 , 1 )
# ray_yellow = (0.799, 0.617, 0.021, 1) # [0.8, 0.619, 0.021])
# ray_blue = (0.127, 0.456, 1.000, 1)
# ray_black = (0, 0, 0, 1)
color_kaykit_black = ( 0.019 , 0.032 , 0.037 , 1 )
# Sounds
# audiodev = aud.Device()
# snd_build = aud.Sound('asset/sounds/build.wav')
# sndbuff_build = aud.Sound.cache(snd_build)
# snd_archer = aud.Sound('asset/sounds/archer.wav')
# sndbuff_archer = aud.Sound.cache(snd_archer)
# snd_mage = aud.Sound('asset/sounds/mage.wav')
# sndbuff_mage = aud.Sound.cache(snd_mage)
# snd_life = aud.Sound('asset/sounds/life.ogg')
# sndbuff_life = aud.Sound.cache(snd_life)
threads_cmd = [ ]
# UPBGE constants
JUST_ACTIVATED = bge . logic . KX_INPUT_JUST_ACTIVATED
JUST_RELEASED = bge . logic . KX_INPUT_JUST_RELEASED
ACTIVATE = bge . logic . KX_INPUT_ACTIVE
# JUST_DEACTIVATED = bge.logic.KX_SENSOR_JUST_DEACTIVATED
###############################################################################
# Méthode kill pour les tâches (threads)
###############################################################################
class thread_with_trace ( threading . Thread ) :
def __init__ ( self , * args , * * keywords ) :
threading . Thread . __init__ ( self , * args , * * keywords )
self . killed = False
def start ( self ) :
self . __run_backup = self . run
self . run = self . __run
threading . Thread . start ( self )
def __run ( self ) :
sys . settrace ( self . globaltrace )
self . __run_backup ( )
self . run = self . __run_backup
def globaltrace ( self , frame , event , arg ) :
if event == ' call ' :
return self . localtrace
else :
return None
def localtrace ( self , frame , event , arg ) :
if self . killed :
if event == ' line ' :
raise SystemExit ( )
return self . localtrace
def kill ( self ) :
self . killed = True
###############################################################################
# Start et stop des tâches (threads)
###############################################################################
def thread_start ( threads , type_txt , fct ) :
threads . append ( thread_with_trace ( target = fct ) )
threads [ len ( threads ) - 1 ] . start ( )
print ( " Thread " , type_txt , " # " , len ( threads ) - 1 , " open. " )
def thread_stop ( threads , type_txt ) :
i = 0
zombie_flag = False
for t in threads :
if not t . is_alive ( ) :
print ( " Thread " , type_txt , " # " , i , " closed. " )
else :
print ( " Thread " , type_txt , " # " , i , " still open ... " )
t . kill ( )
t . join ( )
if not t . is_alive ( ) :
print ( " Thread " , type_txt , " # " , i , " killed. " )
else :
print ( " Thread " , type_txt , " # " , i , " zombie... " )
zombie_flag = True
i + = 1
if zombie_flag == False :
print ( " All threads " , type_txt , " are closed. " )
return True
else :
print ( " There are zombies threads " , type_txt , " . " )
return False
def thread_cmd_start ( fct ) :
thread_start ( threads_cmd , " commands " , fct )
def thread_cmd_stop ( ) :
thread_stop ( threads_cmd , " commands " )
###############################################################################
# Sounds
###############################################################################
# FIXME : Sound crash in Windows (very strange : blender, UPBGE, python ?), no music for Bill
def sound_play ( sound ) :
if scene . objects [ ' Commands ' ] [ ' sound ' ] and sys . platform != " win32 " :
audiodev . play ( sound )
2022-08-22 04:41:22 +02:00
###############################################################################
# Rover fonction élèves
###############################################################################
##
# Avancer le rover
##
def rp_avancer ( ) :
print ( " rp_avancer " )
step = 1
obj = scene . objects [ ' Rover ' ]
# print (obj.worldOrientation.to_euler().z)
x0 = obj . worldPosition . x
y0 = obj . worldPosition . y
z0 = obj . worldPosition . z
if round ( obj . worldOrientation . to_euler ( ) . z , 2 ) == 0.00 : # Sud
obj . worldPosition = [ x0 , y0 - step , z0 ]
if round ( obj . worldOrientation . to_euler ( ) . z , 2 ) == round ( math . pi , 2 ) or round ( obj . worldOrientation . to_euler ( ) . z , 2 ) == - round ( math . pi , 2 ) : # Nord
obj . worldPosition = [ x0 , y0 + step , z0 ]
if round ( obj . worldOrientation . to_euler ( ) . z , 2 ) == round ( math . pi / 2 , 2 ) or round ( obj . worldOrientation . to_euler ( ) . z , 2 ) == - round ( 3 * ( math . pi / 2 ) , 2 ) : # Est
obj . worldPosition = [ x0 + step , y0 , z0 ]
if round ( obj . worldOrientation . to_euler ( ) . z , 2 ) == round ( - math . pi / 2 , 2 ) or round ( obj . worldOrientation . to_euler ( ) . z , 2 ) == round ( 3 * ( math . pi / 2 ) , 2 ) : # Ouest
obj . worldPosition = [ x0 - step , y0 , z0 ]
##
# Tourner à gauche
##
def rp_gauche ( ) :
print ( " rp_gauche " )
step = math . pi / 2 # Pas angulaire
obj = scene . objects [ ' Rover ' ]
obj . applyRotation ( ( 0 , 0 , step ) , True )
##
# Tourner à droite
##
def rp_droite ( ) :
print ( " rp_droite " )
step = math . pi / 2 # Pas angulaire
obj = scene . objects [ ' Rover ' ]
obj . applyRotation ( ( 0 , 0 , - step ) , True )
##
# Marquer
##
def rp_marquer ( ) :
print ( " rp_marquer " )
# FIXME
##
# Détecter
##
def rp_detect ( ) :
print ( " rp_detect " )
# FIXME
##
# Prendre
##
def rover_prendre ( ) :
print ( " rp_prendre " )
# FIXME
##
# Radar
##
def rover_radar ( ) :
print ( " rp_radar " )
# FIXME
###############################################################################
# Rover
###############################################################################
##
# Colision
##
def rover_colision ( ) :
pass
2022-08-14 08:03:07 +02:00
# ###############################################################################
# # Waves (minions)
# ###############################################################################
# ##
# # Création d'un minion
# #
# # Minion caracteristics : category (class), level, hp, speed, armor, bounty, lifes_damage
# # Minion 3d body : body (male,female,old, ...), variante (A,B,C,D, ...), level
# ##
# def ct_minion_create(x,y,cat,level):
# category=cat+"-lv"+str(level)
# minion_3d= scene.objects['Terrain']['minion_3d']
# body = random.choice(minion_3d[category][0])+"_"+random.choice(minion_3d[category][1])+"_"+random.choice(minion_3d[category][2])
# return (ct_minion_create_details(x,y,cat,level,body))
# # Création d'un minion détaillée
# def ct_minion_create_details(x,y,cat,level,body="Knight_m_A_common"):
# category=cat+"-lv"+str(level)
# # Pause
# while scene.objects['Terrain']['run'] == False:
# time.sleep(0.01)
# # Synchronisation des threads : attente de la création d'une tour
# while scene.objects['Terrain']['thread_cmd_lock'] == True:
# # print ("ct_minion : thread_cmd_lock =True")
# time.sleep(0.01)
# # Blocage des autres threads pendant l'apparition du minion
# scene.objects['Terrain']['thread_cmd_lock'] = True
# # Object 3D
# minion= scene.addObject(body, scene.objects['Terrain'])
# minion.worldScale=[0.25,0.25,0.25]
# minion.worldPosition=[x,y,0.1]
# minion.suspendPhysics (True)
# minion.setVisible(False)
# scene.objects['Terrain']['idm']=scene.objects['Terrain']['idm']+1
# minion['id']=scene.objects['Terrain']['idm']
# minion.name="wm("+str(minion['id'])+")" # Wave minion (wm), identifier minion (idm)
# scene.objects['Points']['minions'] +=1
# scene.objects['Points']['minions_run'] +=1
# # Gestion de la distance et des minions zombis
# minion['dist']=0.0
# minion['dist_old']=0.0
# minion['dist_last_x']=minion.worldPosition.x
# minion['dist_last_y']=minion.worldPosition.y
# minion['dist_new']=True
# # Caracteristics
# minion_carac= scene.objects['Terrain']['minion_carac']
# minion['cat']=minion_carac[category][0]
# minion['level']=minion_carac[category][1]
# minion['hp']=minion_carac[category][2]
# minion['speed']=minion_carac[category][3]
# minion['speed_base']=minion_carac[category][3]
# minion['armor']=minion_carac[category][4]
# minion['bounty']=minion_carac[category][5]
# minion['lifes_damage']=minion_carac[category][6]
# minion['buff']=[]
# minion['resist']=[]
# # Actuator Steering
# minion.actuators['Steering'].navmesh=scene.objects[scene.objects['Terrain']['navmesh']]
# minion.actuators['Steering'].target=scene.objects[scene.objects['Terrain']['endtile']]
# minion.actuators['Steering'].distance=2
# # minion.actuators['Steering'].distance=0.5
# minion.actuators['Steering'].velocity=minion['speed_base']*scene.objects['Terrain']['speed']
# # Déblocage des autres threads après l'apparition du minion
# scene.objects['Terrain']['thread_cmd_lock'] = False
# return minion.name
# ##
# # Activation du minion (steering)
# ##
# def ct_minion_go(minion_name):
# minion=scene.objects[minion_name]
# minion.restorePhysics()
# minion.setVisible(True)
# ##
# # Destruction d'un minion
# ##
# def scn_minion_dead(cont):
# obj = cont.owner
# scene.objects['Points']['minions'] -=1
# scene.objects['Points']['minions_run'] -=1
# scene.objects['Points']['kills'] +=1
# scene.objects['Points']['coins']= scene.objects['Points']['coins']+obj['bounty']
# obj.setVisible(False)
# obj.suspendPhysics (True)
# # obj.endObject()
# ###############################################################################
# # Spells / Casts
# ###############################################################################
# ##
# # Buff/debuff Minion
# ##
# def scn_minion_affect(cont):
# if scene.objects['Terrain']['run'] == False: # Pause
# return
# obj = cont.owner
# # print (obj.name, obj['buff'])
# slow_state=False
# # Distance parcourue
# obj['dist']=obj['dist']+ math.sqrt((obj.worldPosition.x-obj['dist_last_x'])**2+(obj.worldPosition.y-obj['dist_last_y'])**2)
# obj['dist_last_x']=obj.worldPosition.x
# obj['dist_last_y']=obj.worldPosition.y
# # Lod
# # print(obj.currentLodLevel)
# # Etats actif
# for debuff_i in obj['buff']:
# if debuff_i[1] <= 0:
# obj['buff'].remove(debuff_i)
# continue
# if debuff_i[0] == "slow":
# slow_state=True
# debuff_i[1] -= scene.objects['Terrain']['speed']
# # Effets
# if slow_state:
# obj.actuators['Steering'].velocity =(obj['speed_base']*scene.objects['Terrain']['speed'])/3
# # obj.actuators['Steering'].velocity =(obj['speed_base']*scene.objects['Terrain']['speed'])/2
# else:
# obj.actuators['Steering'].velocity = obj['speed_base']*scene.objects['Terrain']['speed']
# ###############################################################################
# # Towers
# ###############################################################################
# ##
# # Création d'une tour
# #
# # Tower caracteristics : category (class), damage, speed, range
# ##
# def ct_build(x,y, cat='Archer tower', tower_name="Tower", color=tower_purple, building="square-A"):
# tower_minion_3d= scene.objects['Terrain']['tower_minion_3d']
# if cat=='Archer tower': # Archer
# category="Archer-lv1"
# if cat=='Mage tower': # Mage
# category="Mage-lv1"
# body = random.choice(tower_minion_3d[category][0])+"_"+random.choice(tower_minion_3d[category][1])+"_"+random.choice(tower_minion_3d[category][2])
# return (ct_build_details(x,y, cat, tower_name, color, building, body))
# ##
# # Création d'une tour détaillée
# ##
# def ct_build_details(x,y, cat='Archer tower', tower_name="Tower", color=tower_purple, building="square-A", body="Archer_m_A_common"):
# # Vérification de la place
# if [x,y] in scene.objects['Terrain']['scene_tile_noncontruct'] or [x,y] in scene.objects['Terrain']['scene_tile_tower']:
# return False
# # Vérification du niveau
# scene.objects['Points']['level']= scene.objects['Points']['level'] + 1
# if scene.objects['Points']['level'] > scene.objects['Points']['level_max'] :
# tour= scene.addObject("Tower_error", scene.objects['Terrain'])
# tour.worldPosition=[x,y,0.2]
# tour.worldScale=[1,1,1]
# scene.objects['Terrain']['scene_tile_tower'].append([x,y])
# return False
# # Blocage des autres threads pendant la construction
# scene.objects['Terrain']['thread_cmd_lock'] = True
# # Objets 3D
# time.sleep(0.02)
# tour= scene.addObject('Tower-'+building, scene.objects['Terrain'])
# time.sleep(0.02)
# tour.color = color
# tour.worldPosition=[x,y,0.2]
# tour.worldScale=[1,1,1]
# tour.name="tower("+str(x)+','+str(y)+")"
# scene.objects['Terrain']['scene_tile_tower'].append([x,y])
# tower_minion= scene.addObject(body, scene.objects['Terrain'])
# tower_minion['type_towerminion']=False
# del tower_minion['type_minion']
# tower_minion.name="tm("+str(x)+','+str(y)+")" # Tower minion (tm)
# tower_minion.worldPosition=[x,y,1]
# tower_minion.worldScale=[0.25,0.25,0.25]
# # Draw3d
# if cat=="Archer tower":
# for i in range (3):
# ct_add_tower_bullet(x,y,i, "Arrow")
# if cat=="Mage tower":
# ct_add_tower_cast(x,y)
# # Sounds
# sound_play(sndbuff_build)
# # Caracteristics
# tower_carac= scene.objects['Terrain']['tower_carac']
# tour['cat']=tower_carac[cat][0]
# tour['tower_name']=tower_name
# tour['xp']=0
# tour['lvl_current']=1
# tour['lvl']=1
# tour['damage']=tower_carac[cat][1]
# tour['speed']=tower_carac[cat][2]
# tour['range']=tower_carac[cat][3]
# tour['techno']=[]
# tour['cast']="slow"
# # tour['cast_duration']=2
# tour['cast_duration']=3
# tour['target']=[]
# tour['target_past']=[]
# # Capteur Near
# tour.sensors['Near'].distance=tour['range']*2.5 # Range : 1 point = 2,5
# # tour.sensors['Near'].skippedTicks =round(1/(tour['speed']*scene.objects['Terrain']['speed']))
# tour.sensors['Near'].skippedTicks =round(tour['speed']*50*scene.objects['Terrain']['speed']) # Speed : 1 point = 50 tics
# # Déblocage des autres threads après la construction
# scene.objects['Terrain']['thread_cmd_lock'] = False
# # print (scene.objects)
# return True
# ##
# # Suppression d'une tour
# ##
# def ct_remove(x,y):
# for obj_i in scene.objects:
# if "type_tower" in obj_i.getPropertyNames():
# if x == obj_i.worldPosition.x and y == obj_i.worldPosition.y:
# scene.objects["tm("+str(round(obj_i.worldPosition.x))+','+str(round(obj_i.worldPosition.y))+")"].endObject()
# obj_i.endObject()
# scene.objects['Points']['level']= scene.objects['Points']['level'] - 1
# ##
# # Création d'un projectile
# ##
# def ct_add_tower_bullet(x, y, num, cat="Ball"):
# if cat=="Ball":
# bullet= scene.addObject("Bullet", scene.objects['Terrain'])
# if cat=="Arrow":
# bullet= scene.addObject("Arrow", scene.objects['Terrain'])
# bullet.name="tower("+str(x)+','+str(y)+")-bullet"+str(num)
# bullet.worldPosition=[x,y,1.5]
# bullet.worldScale=[0.75,0.75,0.75]
# bullet.suspendPhysics (True)
# bullet.setVisible(False)
# bullet['activated']=False
# ##
# # Création des sorts
# ##
# def ct_add_tower_cast(x, y):
# cast= scene.addObject("Cast-slow", scene.objects['Terrain'])
# cast.name="tower("+str(x)+','+str(y)+")-cast"
# cast.worldPosition=[x,y,1.5]
# cast.worldScale=[0.75,0.75,0.75]
# cast.suspendPhysics (True)
# cast.setVisible(False)
# cast['activated']=False
# ##
# # Réaction d'une tour
# ##
# def scn_tower_near(cont):
# obj = cont.owner
# sensor = obj.sensors['Near']
# # Tir
# if sensor.positive and len(sensor.hitObjectList)>0 and scene.objects['Terrain']['run']==True :
# # Tir sur le plus avancé basé sur les distances parcourues
# target=sensor.hitObjectList[0]
# target_dist = target['dist']
# for obj_i in sensor.hitObjectList:
# if obj_i['dist']> target_dist:
# target=obj_i
# target_dist = target['dist']
# # Tir sur le plus avancé basé sur l'ordre de passage
# # target=sensor.hitObjectList[0]
# # target_id = target['navPosition']
# # for obj_i in sensor.hitObjectList:
# # if obj_i['navPosition']< target_id:
# # target=obj_i
# # target_id = target['navPosition']
# # Tir sur le plus avancé basé sur les distances par rapport à la tour -> ne marche pas
# # target=sensor.hitObjectList[0]
# # if len(sensor.hitObjectList)>1:
# # target_eloignement = False
# # target_distance_eloignement = 0
# # target_distance_approche = 100
# # print ("detection:",sensor.hitObjectList)
# # for obj_i in sensor.hitObjectList:
# # for obj_j in obj['target_past']:
# # if obj_j[0]==obj_i.name:
# # print ("name :", obj_j[0], "distance :", obj.getDistanceTo(obj_i), "distance old :", obj_j[1], "ecart :", obj.getDistanceTo(obj_i) - obj_j[1])
# # # Éloignement
# # if obj.getDistanceTo(obj_i) - obj_j[1] > 0: # Ecart de distance
# # target_eloignement = True
# # if obj.getDistanceTo(obj_i) > target_distance_eloignement:
# # target=obj_i
# # target_distance_eloignement = obj.getDistanceTo(obj_i)
# # # Approche
# # else:
# # if target_eloignement == False:
# # if obj.getDistanceTo(obj_i) < target_distance_approche:
# # target=obj_i
# # target_distance_approche = obj.getDistanceTo(obj_i)
# # if target_eloignement == True:
# # print ("Eloignement : target:", target.name, "distance :", obj.getDistanceTo(target))
# # print ("")
# # else:
# # print ("Approche : target:", target.name, "distance :", obj.getDistanceTo(target))
# # print ("")
# # obj['target_past']=[]
# # for obj_i in sensor.hitObjectList:
# # obj['target_past'].append([obj_i.name, obj.getDistanceTo(obj_i)])
# # Orientation du tower minion
# towerminion="tm("+str(round(obj.worldPosition.x))+','+str(round(obj.worldPosition.y))+")"
# angle =math.atan((target.worldPosition.y-obj.worldPosition.y)/(target.worldPosition.x-obj.worldPosition.x))
# if target.worldPosition.x>obj.worldPosition.x:
# angle2=math.pi/2+angle-scene.objects[towerminion].worldOrientation.to_euler().z
# angle3=angle
# else:
# angle2=math.pi+math.pi/2+angle-scene.objects[towerminion].worldOrientation.to_euler().z
# angle3=math.pi+angle
# scene.objects[towerminion].applyRotation((0, 0, angle2), False)
# # Sounds
# if obj['cat']=="Archer tower":
# sound_play(sndbuff_archer)
# if obj['cat']=="Mage tower":
# sound_play(sndbuff_mage)
# # Ligne (drawLine) (vitesse rapide)
# if scene.objects['Terrain']['speed']<4: # Pas d'animation à 10 -> plantage
# # Archer (tir de flêche)
# if obj['cat']=="Archer tower":
# if target.name in scene.objects:
# for i in range (3):
# bullet = scene.objects[obj.name+"-bullet"+str(i)]
# if bullet['activated']==False:
# bullet.worldPosition=[obj.worldPosition.x, obj.worldPosition.y, obj.worldPosition.z+0.8]
# bullet['activated']=True
# bullet.setVisible(True)
# scene.objects['Terrain']['draw3d_process']=True
# scene.objects['Terrain']['draw3d_list'].append([20, "arrow", obj.name, bullet.name, target.name, "normal", 20])
# break
# if i ==3 :
# print ("Plus de bullet de disponible pour la tour : "+obj.name)
# # Cast zone
# if obj['cat']=="Mage tower": # Mage (cast)
# cast = scene.objects[obj.name+"-cast"]
# cast.worldPosition=[obj.worldPosition.x, obj.worldPosition.y, obj.worldPosition.z+0.8]
# cast.worldScale=[0.01,0.01,0.01]
# cast.setVisible(True)
# scene.objects['Terrain']['draw3d_process']=True
# scene.objects['Terrain']['draw3d_list'].append([60, "cast", obj.name, cast.name, "slow", 60])
# # Rayon
# # FIXME : ne marche plus (zoom et pan)
# # if obj['cat']=="Test":
# # if target.name in scene.objects:
# # scene.objects['Terrain']['draw2d_process']=True
# # scene.objects['Terrain']['draw2d_list'].append([5, "ray", [obj.worldPosition.x, obj.worldPosition.y, obj.worldPosition.z+0.8], target.name, angle3, ray_yellow,5]) # Suivi du minion
# # Dégats : pas d'animation à 10
# if scene.objects['Terrain']['speed'] >= 4:
# target['hp'] = target['hp'] - obj['damage']
# if target['hp']<=0:
# target['dead']=True
# # Cast (buff and debuff)
# if obj['cat']=="Mage tower":
# for target_i in sensor.hitObjectList:
# target_i['buff'].append([obj['cast'], obj['cast_duration']])
# ###############################################################################
# # Carte
# ###############################################################################
# ##
# # Texte de carte
# ##
# def ct_map_text_wave(wave):
# scene.objects['Points-Map-text']['Text']=("Wave " + str(wave))
# scene.objects['Points-Map-text'].setVisible(True,False)
# scene.objects['Points-Map-text'].color = color_text_yellow
# scene.objects['Points-Map-text']['timer']=0
# scene.objects['Points-Map-text']['anim']=True
# ##
# # Texte de carte
# ##
# def ct_map_text(text):
# scene.objects['Points-Map-text']['Text']=text
# scene.objects['Points-Map-text'].setVisible(True,False)
# ##
# # Fin
# ##
# def ct_map_end(x,y):
# scene.objects['Map_end'].worldPosition=[x,y,0.2]
# scene.objects['Map_end'].worldScale=[0.25,0.25,0.25]
# ##
# # Minion arrivé à la fin
# ##
# def scn_map_end_near(cont):
# obj = cont.owner
# sensor = obj.sensors['Near']
# if sensor.positive :
# for obj_i in sensor.hitObjectList :
# sound_play(sndbuff_life)
# if scene.objects['Points']['lifes']>0:
# scene.objects['Points']['lifes']= scene.objects['Points']['lifes']-obj_i['lifes_damage']
# scene.objects['Points']['minions_run'] -=1
# for obj_i in sensor.hitObjectList :
# obj_i.setVisible(False)
# obj_i.suspendPhysics (True)
# # obj_i.endObject()
# ##
# # Drapeau de fin
# ##
# def ct_map_endflag(x,y):
# endflag= scene.addObject("Map_endflag", scene.objects['Terrain'])
# endflag.worldPosition=[x,y,0.3]
# endflag.worldScale=[0.3,0.3,0.3]
# if round(x) == x :
# if round(y) == y :
# scene.objects['Terrain']['scene_tile_noncontruct'].append([x,y])
# else:
# scene.objects['Terrain']['scene_tile_noncontruct'].append([x,math.floor(y)])
# scene.objects['Terrain']['scene_tile_noncontruct'].append([x,math.ceil(y)])
# else:
# if round(y) == y :
# scene.objects['Terrain']['scene_tile_noncontruct'].append([math.floor(x),y])
# scene.objects['Terrain']['scene_tile_noncontruct'].append([math.ceil(x),y])
# else:
# scene.objects['Terrain']['scene_tile_noncontruct'].append([math.floor(x),math.floor(y)])
# scene.objects['Terrain']['scene_tile_noncontruct'].append([math.floor(x),math.ceil(y)])
# scene.objects['Terrain']['scene_tile_noncontruct'].append([math.ceil(x),math.floor(y)])
# scene.objects['Terrain']['scene_tile_noncontruct'].append([math.ceil(x),math.ceil(y)])
2022-08-22 21:56:46 +02:00
###############################################################################
# Temporisation
###############################################################################
def rp_sleep ( duration ) :
# time.sleep(duration*(1/scene.objects['Terrain']['speed']))
time . sleep ( duration )
# def ct_tempo (duration):
# scene.objects['Terrain']['delay_cmd']=0
# while scene.objects['Terrain']['delay_cmd']<duration*(1/scene.objects['Terrain']['speed']):
# # print("Temporization commands :",scene.objects['Terrain']['delay_cmd'])
# time.sleep(0.001)
# # pass
2022-08-14 08:03:07 +02:00
# ###############################################################################
# # Affichage
# ###############################################################################
# ##
# # Texte du panel d'information
# ##
# def ct_print (text):
# # text_info (texte)
# if text=="":
# scene.objects['Info-1-text'].setVisible(False,False)
# scene.objects['Info-2-text'].setVisible(False,False)
# else:
# lines_txt=text.split("\n", 6)
# for i in range (len(lines_txt),6):
# lines_txt.append("")
# scene.objects['Info-1-text'].setVisible(True,False)
# scene.objects['Info-2-text'].setVisible(True,False)
# scene.objects['Info-1-text']['Text']=lines_txt[0]+"\n"+lines_txt[1]+"\n"+lines_txt[2]
# scene.objects['Info-2-text']['Text']=lines_txt[3]+"\n"+lines_txt[4]+"\n"+lines_txt[5]
# ###############################################################################
# # Dessin 3d
# ###############################################################################
# def scn_draw3d(cont):
# obj = cont.owner
# if obj.sensors['Draw3d'].positive==False:
# return
# if len(scene.objects['Terrain']['draw3d_list'])==0:
# scene.objects['Terrain']['draw3d_process']=False
# return
# # Dépilage des draws à executer
# for draw_cmd in scene.objects['Terrain']['draw3d_list']:
# # Archer (tir de flêche)
# # scene.objects['Terrain']['draw3d_list'].append([20, "arrow", obj.name, bullet.name, target.name, "normal", 20])
# if draw_cmd[1]=="arrow":
# if draw_cmd[4] in scene.objects:
# tower= scene.objects[draw_cmd[2]]
# bullet = scene.objects[draw_cmd[3]]
# target = scene.objects[draw_cmd[4]]
# x0 = tower.worldPosition.x
# y0 = tower.worldPosition.y
# # z0 = tower.worldPosition.z+0.8 # ajustement +0.8
# z0 = tower.worldPosition.z+1 # ajustement +1
# x1 = target.worldPosition.x
# y1 = target.worldPosition.y
# z1 = target.worldPosition.z+0.5 # ajustement +0.5
# if x1>x0:
# angle_z =math.atan((y1-y0)/(x1-x0))+math.pi/2
# else:
# angle_z =math.pi+math.atan((y1-y0)/(x1-x0))+math.pi/2
# angle_y =math.atan((z1-z0)/(math.sqrt((x1-x0)**2+(y1-y0)**2)))
# step_x=(x1-x0)/draw_cmd[6]
# step_y=(y1-y0)/draw_cmd[6]
# step_z=(z1-z0)/draw_cmd[6]
# step = draw_cmd[6]-draw_cmd[0]
# bullet.worldPosition=[x0+step_x*step, y0+step_y*step, z0+step_z*step]
# bullet.worldOrientation=[0, angle_y, angle_z]
# draw_cmd[0] = draw_cmd[0]-scene.objects['Terrain']['speed']
# # Dégats
# if draw_cmd[0]<=0:
# bullet['activated']=False
# bullet.setVisible(False)
# target['hp'] = target['hp'] - tower['damage']
# if target['hp']<=0: # Mort
# target['dead']=True
# # Mage (cast)
# # scene.objects['Terrain']['draw3d_list'].append([60, "cast", obj.name, cast.name, "slow", 60])
# if draw_cmd[1]=="cast":
# cast = scene.objects[draw_cmd[3]]
# step = draw_cmd[5]-draw_cmd[0]
# cast.worldScale=[0.05*step,0.05*step,0.05*step]
# # cast.worldScale=[0.75*step,0.75*step,0.75*step]
# draw_cmd[0] = draw_cmd[0]-scene.objects['Terrain']['speed']
# # Fin
# if draw_cmd[0]<=0:
# cast.setVisible(False)
# # Suppression des draws finis
# i=0
# for draw_cmd in scene.objects['Terrain']['draw3d_list']:
# if draw_cmd[0]<=0:
# scene.objects['Terrain']['draw3d_list'].pop(i)
# else:
# i=i+1
# if len(scene.objects['Terrain']['draw3d_list'])==0:
# scene.objects['Terrain']['draw3d_process']=False
# ###############################################################################
# # Dessin 2d (bge.render.drawLine)
# ###############################################################################
# def circle (center, radius, color):
# ang = 0.0
# # ang_step = 0.1
# ang_step = 0.2
# while ang< 2 * math.pi:
# x0 = center[0]+float(radius*math.cos(ang))
# y0 = center[1]+float(radius*math.sin(ang))
# x1 = center[0]+float(radius*math.cos(ang+ang_step))
# y1 = center[1]+float(radius*math.sin(ang+ang_step))
# bge.render.drawLine([x0,y0,center[2]],[x1,y1,center[2]],color)
# ang += ang_step
# ##
# # Affiche les draws 2d en cours
# #
# # Type de draw 2d:
# # arrow : [5, "arrow", [obj.worldPosition.x, obj.worldPosition.y, obj.worldPosition.z+0.8],target.name, angle3, ray_yellow,5]
# # cast : [30, "cast", [obj.worldPosition.x, obj.worldPosition.y, obj.worldPosition.z+0.8], ray_blue,30]
# # ray : [5, "ray", [obj.worldPosition.x, obj.worldPosition.y, obj.worldPosition.z+0.8],[target.worldPosition.x, target.worldPosition.y, target.worldPosition.z], angle3, ray_yellow,5]
# ##
# def scn_draw2d(cont):
# obj = cont.owner
# if obj.sensors['Draw2d'].positive==False:
# return
# if len(scene.objects['Terrain']['draw2d_list'])==0:
# scene.objects['Terrain']['draw2d_process']=False
# return
# # Dépilage des draws à executer
# for draw_cmd in scene.objects['Terrain']['draw2d_list']:
# # Archer (tir de flêche)
# if draw_cmd[1]=="arrow":
# if draw_cmd[3] in scene.objects:
# # x0 = draw_cmd[2][0]+0.25*(math.cos(draw_cmd[4]))
# # y0 = draw_cmd[2][1]+0.25*(math.sin(draw_cmd[4]))
# x0 = draw_cmd[2][0]
# y0 = draw_cmd[2][1]
# z0 = draw_cmd[2][2]
# x1 = scene.objects[draw_cmd[3]].worldPosition.x
# y1 = scene.objects[draw_cmd[3]].worldPosition.y
# z1 = scene.objects[draw_cmd[3]].worldPosition.z-0.1 # ajustement -0.1
# distance = math.sqrt((x1-x0)**2+(y1-y0)**2+(z1-z0)**2)
# distance_xy = math.sqrt((x1-x0)**2+(y1-y0)**2)
# distance_z = z1-z0
# angle_z =math.atan((z1-z0)/(distance_xy))
# angle_xy =math.atan((y1-y0)/(x1-x0))
# step=distance_xy/(2+draw_cmd[6])
# step_z=distance_z/(2+draw_cmd[6])
# if x1>x0:
# angle2=angle_xy
# else:
# angle2=math.pi+angle_xy
# x2=x0+(((6-draw_cmd[0])*step)*(math.cos(angle2)))
# y2=y0+(((6-draw_cmd[0])*step)*(math.sin(angle2)))
# z2=z0-(((6-draw_cmd[0])*step_z)*(math.sin(angle_z)))
# x3=x0+(((6-draw_cmd[0])*step+step)*(math.cos(angle2)))
# y3=y0+(((6-draw_cmd[0])*step+step)*(math.sin(angle2)))
# z3=z0-(((6-draw_cmd[0])*step_z+step_z)*(math.sin(angle_z)))
# bge.render.drawLine([x2,y2, z2], [x3,y3,z3], draw_cmd[5])
# draw_cmd[0] = draw_cmd[0]-scene.objects['Terrain']['speed']
# # if scene.objects['Terrain']['speed']<1:
# # draw_cmd[0] = draw_cmd[0]-scene.objects['Terrain']['speed']
# # else:
# # draw_cmd[0] = draw_cmd[0]-1
# # bge.render.drawLine([draw_cmd[2][0]+((6-draw_cmd[0])*0.25)*(math.cos(draw_cmd[4])), draw_cmd[2][1]+((6-draw_cmd[0])*0.25)*(math.sin(draw_cmd[4])),draw_cmd[2][2]],
# # [draw_cmd[2][0]+((6-draw_cmd[0])*0.25+0.25)*(math.cos(draw_cmd[4])), draw_cmd[2][1]+((6-draw_cmd[0])*0.25+0.25)*(math.sin(draw_cmd[4])),draw_cmd[2][2]],
# # draw_cmd[5])
# # Mage (cast)
# # FIXME : Problème
# if draw_cmd[1]=="cast": # Mage (cast)
# circle(draw_cmd[2], 3.1-draw_cmd[0]*0.1, draw_cmd[3])
# circle(draw_cmd[2], 3-draw_cmd[0]*0.1, draw_cmd[3])
# circle(draw_cmd[2], 2.9-draw_cmd[0]*0.1, draw_cmd[3])
# draw_cmd[0] = draw_cmd[0]-scene.objects['Terrain']['speed']
# # if scene.objects['Terrain']['speed']<=2:
# # draw_cmd[0] = draw_cmd[0]-scene.objects['Terrain']['speed']
# # if scene.objects['Terrain']['speed']==4:
# # draw_cmd[0] = draw_cmd[0]-draw_cmd[4]/2
# # circle(draw_cmd[2], 3, draw_cmd[3]) # simple
# # radius=[3,3,2.5,2.5,2,2,1.5,1.5,1,1,1] # basé sur un tableau
# # circle(draw_cmd[2], radius[draw_cmd[0]], draw_cmd[3])
# # Rayon
# if draw_cmd[1]=="ray":
# if draw_cmd[3] in scene.objects:
# x0 = draw_cmd[2][0]+0.25*(math.cos(draw_cmd[4]))
# y0 = draw_cmd[2][1]+0.25*(math.sin(draw_cmd[4]))
# x1 = scene.objects[draw_cmd[3]].worldPosition.x
# y1 = scene.objects[draw_cmd[3]].worldPosition.y
# z1 = scene.objects[draw_cmd[3]].worldPosition.z
# bge.render.drawLine([x0,y0, draw_cmd[2][2]], [x1,y1,z1], draw_cmd[5]) # suivi minion
# # bge.render.drawLine([draw_cmd[2][0]+0.25*(math.cos(draw_cmd[4])), draw_cmd[2][1]+0.25*(math.sin(draw_cmd[4])), draw_cmd[2][2]], draw_cmd[3], draw_cmd[5]) # décalage minion
# # bge.render.drawLine(draw_cmd[2], draw_cmd[3], draw_cmd[5]) # simple
# draw_cmd[0] = draw_cmd[0]-scene.objects['Terrain']['speed']
# # Suppression des draws finis
# i=0
# for draw_cmd in scene.objects['Terrain']['draw2d_list']:
# if draw_cmd[0]<=0:
# scene.objects['Terrain']['draw2d_list'].pop(i)
# else:
# i=i+1
# if len(scene.objects['Terrain']['draw2d_list'])==0:
# scene.objects['Terrain']['draw2d_process']=False