sélection de chapitres

This commit is contained in:
Nicolas Pettiaux 2022-10-22 08:28:35 +02:00
parent 1c26a6a051
commit 300950d1d4
10 changed files with 4246 additions and 38 deletions

View File

@ -0,0 +1,303 @@
\section{Ondes sonores - le son }
\subsection{Trois caractéristiques du son}
Lorsque vous écoutez une mélodie jouée par un instrument de musique ou
une personne qui parle, vous pouvez déterminer de quel instrument il
s'agit ou quelle est la personne qui parle.
Vous pouvez également détecter les différences de fréquence et les
variations de volume sonore.
Le son a trois caractéristiques~:
\begin{enumerate}
\item La hauteur~: liée à la fréquence.
La hauteur du son est la sensation d'aigu ou de grave. Elle est liée à
la fréquence de vibration de la source oscillante.
Un son grave pour l'oreille humaine correspond à une basse fréquence, un
son aigu à une fréquence élevée.
L'oreille humaine perçoit des sons si leur fréquence est comprise
approximativement entre 16 Hz et 20 kHz.
D'un point de vue musical, la hauteur du son détermine la note.
\item Le timbre
Le timbre d'un son est la sensation physiologique qui permet de
distinguer deux sons de même fréquence mais dont la perception semble
différente. C'est une caractéristique du son qui nous permet de
déterminer la différence entre deux voix de deux personnes différentes.
\item L'intensité sonore.
C'est la caractéristique du son liée à l'amplitude du son perçu. Nous
disons dans le langage courant qu'il s'agit du volume du son (plus ou
moins «~fort~»).
\end{enumerate}
\subsection{Intensité sonore}
Une source sonore produit une onde qui est captée par un auditeur se
trouvant à une certaine distance de l'émetteur.
Quelle sera l'intensité sonore perçue par le capteur~? Comment définir
cette intensité sonore~?
\begin{figure}
\centering
\includegraphics[width=6.442cm,height=2.623cm]{Pictures/10000001000001C2000000B7D5766B8618542229.png}
\caption{}
\end{figure}
\begin{enumerate}
\item Énergie captée en fonction de la surface du capteur
Dans le cas d'une onde sonore à une dimension, un capteur situé juste à
côté de l'émetteur reçoit la totalité de la puissance de l'onde, car
l'onde n'a pas d'autre place où aller.
\begin{figure}
\centering
\includegraphics[width=5.355cm,height=3.808cm]{Pictures/10000001000001A50000012CD4D736604ADF8EAC.png}
\caption{}
\end{figure}
Pour une onde en trois dimensions (produisant un son de façon isotrope
dans toutes les directions), le capteur ne captera qu'une partie de
l'onde, car seule une partie de l'onde atteint le capteur. L'énergie
captée dépend donc de la surface du capteur.
\item Énergie captée en fonction du temps
Évidemment, on captera plus d'énergie si on capte l'énergie de l'onde
pendant plus de temps. La quantité d'énergie captée doit donc être
proportionnelle au temps pendant lequel on capte l'énergie.
\end{enumerate}
L'énergie captée (E)~ est~:
\begin{itemize}
\item proportionnelle à un facteur qui va dépendre de l'énergie de l'onde.
On va appeler ce facteur \emph{l'intensité de l'onde (I).} On capte peu
d'énergie avec une onde de faible intensité et beaucoup avec une onde de
grande intensité. La quantité d'énergie captée doit donc être
proportionnelle à l'intensité $I$ de l'onde.
\item proportionnelle à la surface du capteur (A)
\item proportionnelle au temps durant lequel le capteur reçoit l'onde (t).
\end{itemize}
Donc, une bonne définition de l'intensité sonore est l'énergie
captée par unité de surface et de temps autrement dit la puissance
captée par unité de surface.
L'intensité sonore s'exprime donc en \si{w/m^2}.
\subsection{Intensité sonore et échelle logarithmique}
L'oreille humaine peut capter des sons dont l'intensité est
au minimum de $10{-12}$ \si{w/m^2}.
Si le son a une intensité plus petite que cette valeur, on n'entend pas
le son.
L'intensité sonore minimale perceptible par l'oreille humaine est de
$10^{-12} \si{w/m^2}$.
Une conversation normale correspond à une intensité de
$3 10^{-6} \si{w/m^2}$.
Le son devient trop intense pour l'oreille humaine si son intensité
dépasse $1 \si{W/m^2}$ approximativement. C'est le seuil de
la douleur.
Des bruits dangereux pour l'oreille correspondent à
$10^2 \si{W/m^2}$ et plus.
Une intensité sonore de $10^5 \si{w/m^2}$ serait l'intensité sonore perçue si vous placiez votre oreille à la
sortie d'un réacteur d'avion. C'est la limite de rupture du tympan
(approximativement).
L'éventail des sons audibles en terme d'intensité sonore est très grand.
C'est pourquoi il est plus commode d'utiliser \emph{une échelle
logarithmique, appelée échelle décibel. }
La relation entre l'intensité sonore I (en \si{w/m^2}) et le
niveau d'intensité sonore (en décibel noté \si{dB}) est~:
\includegraphics[width=10.269cm,height=14.349cm]{Pictures/10000001000002480000033056ED2EA613E32604.png}\emph{\textbf{Exercices}}
Convertir en dB, les intensités sonores de~:
\begin{enumerate}
\item I = $10^{-12} \si{w/m^2}$ (Rép~: 0 dB)
\item I = $10 \si{ W/m^2 }$ (Rép~: 130 dB)
\item I = $20 \si{w/m^2}$ (Rép~: 133 dB)
\item I = $10^{2} \si{W/m^2}$ (Rép~: 140 dB)
\item I = $10^5 \si{w/m^2}$ (Rép~: 170 dB)
\end{enumerate}
\subsection{Exercice}
\begin{enumerate}
\item Calculez le niveau d'intensité sonore émis par un haut-parleur
produisant un son d'une intensité sonore de $10^{-5}$ \si{w/m^2}(Rép~: 70 dB)
\item Calculez le niveau d'intensité sonore émis par deux haut-parleurs
produisant chacun un son d'une intensité sonore de
10\textsuperscript{-5} \si{w/m^2}(Rép~: 73 dB)
\item Calculez le niveau d'intensité sonore émis par trois haut-parleurs
produisant chacun un son d'une intensité sonore de
10\textsuperscript{-5} \si{w/m^2}(Rép~: 75 dB)
\item Calculez le niveau d'intensité sonore émis par dix haut-parleurs
produisant chacun un son d'une intensité sonore de
10\textsuperscript{-5} \si{w/m^2}(Rép~: 80 dB)
\end{enumerate}
\subsection{Conclusion}
L'échelle des décibels n'est pas une échelle linéaire (c'est une échelle
logarithmique).
\emph{Chaque fois que l'intensité sonore double , le niveau
d'intensité sonore augmente de approximativement 3 dB}. Autrement dit,
un son deux fois plus intense verra son niveau d'intensité sonore
augmenter de 3 dB.
Si l'intensité sonore est \textbf{multipliée par 10}, le niveau
d'intensité sonore \textbf{augmente} exactement de 10 dB (car il s'agit
d'un logarithme en base 10).
\subsection{Règles
en vigueur en Belgique. }
Pour la sécurité de vos oreilles, je vous conseille vivement de lire
le livre de la page 53 à 55.
\emph{En Belgique, un arrêté de l'Exécutif régional wallon
limite à 90 dB le niveau d'intensité sonore dans les discothèques et
salles de concert}. Cette norme sécuritaire est malheureusement trop
peu souvent respectée.
Il existe une application sur les Smartphones~: le sonomètre.
Téléchargez l'application, essayer là et faites en une démonstration en classe si vous le désirez.
\subsection{Exercices}
\subsubsection{Exercice 1}
Calculer le niveau d'intensité sonore correspondant à un ensemble de
trois sources identiques produisant chacune séparément un niveau
d'intensité sonore de 60 dB.
\subsubsection{Exercice 2}
Dans une pièce, une imprimante produit un son d'un niveau sonore de
60 dB. Simultanément, dans la même pièce, un ventilateur produit un son
de niveau sonre égal à 50 dB. Calculer le niveau d'intensité sonore
perçu par un auditeur dans la pièce.
\subsubsection{Exercice 3}
Un son de niveau d'intensité sonore de 70 dB atteint un mur dans
lequel il perd 99\% de son intensité en le traversant. Quel est le
niveau d'intensité sonore perçu après avoir traversé le mur~? (C'est à
peu près ce qu'il se passe entre deux locaux dans lesquels deux profs
donnent cours en parlant simultanément).
\subsubsection{Exercice 4}
En Belgique, l'exposition des travailleurs à des bruits de niveau
d'intensité sonore de 80 dB pendant 8 heures par jour est considérée
légalement comme le plafond à ne pas dépasser. Pour un niveau
d'intensité sonore de seulement 3 dB en plus, la durée d'exposition doit
être réduite de moitié, soit 4 heures maximum. Justifie la logique de
cette règle.
\subsubsection{Exercice 5}
Une exposition quotidienne durant 8 heures à un niveau d'intensité
sonore de 80 dB est considérée par la loi belge comme étant la limite
maximale à ne pas dépasser.
Calculez la durée d'exposition quotidienne à ne pas dépasser si le
niveau d'intensité sonore est de 98 dB (comme dans beaucoup de
discothèques ou lorsque vous êtes proches des enceintes à un festival).
\subsubsection{Exercice 6}
Calculer le niveau d'intensité sonore correspondant à un ensemble de
trois sources identiques produisant chacune séparément un niveau
d'intensité sonore de 60 dB.
\subsubsection{Exercice 7}
Dans une pièce, une imprimante produit un son d'un niveau sonore de
60 dB. Simultanément, dans la même pièce, un ventilateur produit un son
de niveau sonre égal à 50 dB. Calculer le niveau d'intensité sonore
perçu par un auditeur dans la pièce.
\subsubsection{Exercice 8}
Un son de niveau d'intensité sonore de 70 dB atteint un mur dans
lequel il perd 99\% de son intensité en le traversant. Quel est le
niveau d'intensité sonore perçu après avoir traversé le mur~? (C'est à
peu près ce qu'il se passe entre deux locaux dans lesquels deux profs
donnent cours en parlant simultanément).
\subsubsection{Exercice 9}
En Belgique, l'exposition des travailleurs à des bruits de niveau
d'intensité sonore de 80 dB pendant 8 heures par jour est considérée
légalement comme le plafond à ne pas dépasser. Pour un niveau
d'intensité sonore de seulement 3 dB en plus, la durée d'exposition doit
être réduite de moitié, soit 4 heures maximum. Justifie la logique de
cette règle.
\subsubsection{Exercice 10}
Une exposition quotidienne durant 8 heures à un niveau d'intensité
sonore de 80 dB est considérée par la loi belge comme étant la limite
maximale à ne pas dépasser.
Calculez la durée d'exposition quotidienne à ne pas dépasser si le
niveau d'intensité sonore est de 98 dB (comme dans beaucoup de
discothèques ou lorsque vous êtes proches des enceintes à un festival).
\subsection{Intensité à une distance d'une source isotrope }
Imaginez une source, l'explosion d'un pétard par exemple, qui produit un
son d'une certaine puissance P. Pourrions-nous calculer l'intensité
sonore perçue si vous êtes à une certaine distance R du pétard~?
\includegraphics[width=7.103cm,height=5.315cm]{Pictures/100000010000018C00000128C1F2235D9C61A7FD.png}Imaginons
que l'on soit à une certaine distance R d'une source qui émet une
énergie E pendant un temps t. Ici, l'énergie est émise également dans
toutes les directions, ce qui signifie qu'on a affaire à une source
isotrope.
Ainsi, à une certaine distance r, l'énergie émise est distribuée
également sur une sphère entourant la source.
À une certaine distance de la source, il y a un capteur ayant une aire
$A_{\mbox{capteur}}$. Le capteur ne capte qu'une partie de l'énergie émise par la
source.
La proportion captée est donnée simplement par le rapport entre l'aire
du capteur ($A_{\mbox{capteur}}$) et l'aire totale sur laquelle est répartie
l'énergie de la source.
\subsection{Exercices}
\subsubsection{Exercice 11}
Une source lumineuse isotrope a une puissance de 100 \si{w}. Quelle est l'intensité sonore de l'onde captée à 120 \si{m} de la source?
\subsubsection{Exercice 12}
Une personne crie à 100 m de distance d'un auditeur en produisant un son
d'une intensité perçue de 55 dB. Quelle sera le niveau d'intensité
sonore perçu par cet auditeur si 20 000 personnes se trouvant à 100 m de
distance de cet auditeur produisent chacune un cri identique ?
\subsubsection{Exercice 13}
Un auditeur se trouvant à 50 mètres de distance d'une source sonore
isotrope capte un son de 100 dB. Quel est le niveau d'intensité sonore
perçu par l'auditeur à 1 km de distance de la source?
\subsubsection{Exercice 14}
L'explosion d'un pétard produit un son ayant une intensité de 40 dB
quand on est à 50 m du pétard. Quelle est l'intensité (en dB) du son
produit par l'explosion de 1000 pétards si on est à 200 m de
l'explosion?

View File

@ -0,0 +1,253 @@
\section{Propriétés des ondes : réflexion, réfraction. }
Nous avons observé, grâce à la cuve à ondes, ces phénomènes
ondulatoires.
Analysons-les plus en détail.
\subsection{Réflexion des ondes} % (p 62 à 65 du livre)}}
\begin{figure}
\centering
\includegraphics[width=6.957cm,height=3.156cm]{Pictures/100000010000020F000000EF2B8E3664FF7463BF.png}
\caption{}
\end{figure}
Nous l'avons observée à l'aide de la cuve à onde et voyez sur la figure
ci-contre que \textbf{la longueur d'onde est inchangée.}
Sous quel angle est renvoyée l'onde~?
\begin{figure}
\centering
\includegraphics[width=6.548cm,height=4.193cm]{Pictures/10000001000001D10000012A74B1751A93498773.png}
\caption{}
\end{figure}
Définitions~:
\begin{enumerate}
\item \textbf{L'angle d'incidence ($\theta_i$)} est l'angle formé par la direction
de propagation de l'onde incidente et la normale (la perpendiculaire) à
l'obstacle.
\item \textbf{L'angle de réflexion ($\theta_r$)} est l'angle formé par la direction
des ondes réfléchies et la normale.
\end{enumerate}
Lire les pages 64-65 du livre VANIN, 3è édition de Y. Verbist
\begin{enumerate}
\item Réflexion d'ondes sonores.
\item Réflexion sonores dans une salle.
\item Le sonar
\item L'échographie
\item
\begin{figure}
\centering
\includegraphics[width=7.13cm,height=5.433cm]{Pictures/100000010000024A000001FB96EDB4A31FE3EFC8.png}
\caption{La mer gaufrée à la pointe des Baleines à l'Ile de Ré, en France.}
\end{figure}
\end{enumerate}
Une belle visualisation des ondes réfléchies est la mer gaufrée.
Nous voyons la superposition des vagues incidentes et des vagues
réfléchies qui produit ``un quadrillage'', appellé ``mer gaufrée'',
particulièrement visible à l'Ile de Ré.
\subsection{Réfraction des ondes} % ( P 66 à 69 du livre)
La \textbf{réfraction} est un phénomène ondulatoire qui est tel
qu'\textbf{une onde change de direction }lorsqu'elle \textbf{change de
milieu}. Ce changement de direction est dû à un changement de vitesse de
l'onde qui traverse deux milieux différents.
\subsection{Analyse expérimentale. }
Pour analyser ce phénomène, prenons une cuve à onde et simulons le
changement de milieu à l'aide d'une modification de la profondeur de
l'eau.
En effet, la vitesse des vagues diminue lorsque la profondeur de l'eau
diminue.
\includegraphics[width=6.017cm,height=3.408cm]{Pictures/1000000100000A3C000005CCA7E68DBE45CF2A53.png}
Nous pouvons observer~:
$h_1 > h_2$ donc $v_1 > v_2$
$v_1$ est la vitesse de l'onde dans le milieu le plus profond et $v_2$ la
vitesse de l'onde dans le milieu le moins profond.
Et comme $f_1 = f_2$ (la fréquence n'est pas modifiée, c'est la fréquence de
l'OH)~:
FIXME
La réfraction modifie la vitesse de l'onde en changeant de milieu et
donc modifie dans le même sens la longueur d'onde.
Observons la cuve à onde sous un autre angle, vue de haut (toujours dans
la même situation~: $v_1> v_2$).
FIXME à vérifier
\begin{figure}
\centering
\includegraphics[width=5.076cm,height=4.512cm]{Pictures/1000000100000D3A00000BC4C32708B895F5FFB5.png}
\caption{}
\end{figure}
Comme l'onde passe d'un milieu profond à un milieu moins profond, elles
ralentissent et changent de direction.
Comment quantifier ce changement de direction~?
\begin{figure}
\centering
\includegraphics[width=6.652cm,height=5.652cm]{Pictures/1000000100000D3A00000B3EA693DF6AC5A29F0B.png}
\caption{}
\end{figure}
Définissons les angles d'incidence et de réfraction~:
\begin{description}
\item[L'angle d'incidence ($\theta_1$)] est l'angle formé par la direction
de propagation de l'onde incidente et la normale (la perpendiculaire) à
l'obstacle.
\item[L'angle de réflexion ($\theta_2$)] est l'angle formé par la direction
des ondes réfractées et la normale.
\end{description}
Nous voyons ci-contre que~:
si $v_1 < v_2$ alors $\theta_1 > \theta_2$ (l'onde se rapproche de la normale).
FIXME à vérifier
Quelle est la relation entre les vitesses et les angles d'incidence et
de réfraction~?
\begin{figure}
\centering
\includegraphics[width=18.516cm,height=20.461cm]{Pictures/10000001000013080000150A74E0EE61F2B1EE2F.png}
\caption{}
\end{figure}
\begin{figure}
\centering
\includegraphics[width=2.634cm,height=1.412cm]{Pictures/1000000100000045000000258E7A9DA5E900B5EA.png}
\caption{}
\end{figure}
\subsection{Applications de la réfraction}
On sait que le son se propage plus loin la nuit que le jour,
lorsqu'un son est produit au niveau du sol. Pourquoi cette différence~?
\includegraphics[width=8.356cm,height=5.151cm]{Pictures/100000010000021B0000014C687D75FBC118E240.png}
Durant
la journée, la température de l'air diminue quand on s'élève en
altitude. En effet, le sol chauffe plus rapidement que l'atmosphère.
Or, la vitesse du son diminue lorsque la température diminue.
Nous avons vu que lorsque la vitesse d'une onde diminue, l'onde se
réfracte de telle sorte que l'angle de réfraction r soit inférieur à
l'angle d'incidence i.
En traversant différentes couches d'air de plus en plus froides en
s'élevant, le son est dévié vers le haut. Un observateur au sol
n'entendra plus le son.
\begin{figure}
\centering
\includegraphics[width=8.414cm,height=5.172cm]{Pictures/1000000100000226000001526F2E95C895BB2EC1.png}
\caption{}
\end{figure}
Durant la nuit, le phénomène inverse se passe. La température de l'air
augmente quand on s'élève. En effet, le sol se refroidit plus vite que
l'atmosphère.
\textbf{La vitesse du son augmente lorsque la température augmente} et
donc la vitesse de l'onde réfractée est plus grande que la vitesse de
l'onde émise. L'angle de réfraction sera plus grand que l'angle
d'incidence et l'onde, étant réfractée vers le sol, se rapproche du sol
et le son porte plus loin.
\subsection{Exercice}
\subsubsection{Ex. 1}
\includegraphics[width=7.807cm,height=4.581cm]{Pictures/10000001000004570000028CCC770E758E0BAEF3.png}
Dans
le cadre d'un phénomène de réflexion~: quel est l'angle $\theta$ sur cette
figure~? ( Réponse~: 65°)
\subsubsection{Ex. 2 }
%( N° 6 du livre p 78)}}
\includegraphics[width=7.086cm,height=4.948cm]{Pictures/10000001000003620000025DC72F2F5C1B5B30DC.png}
La
figure ci-contre représente le passage d'une onde d'un milieu A vers un
milieu B.
\begin{enumerate}
\item Dans lequel de ces deux milieux la vitesse de propagation est-elle la
plus élevée~?
\item Si la fréquence des ondes est de 50 Hz et que la figure est à
l'échelle 1:1, calculer la vitesse de l'onde dans chaque milieu.
\end{enumerate}
\subsubsection{Ex. 3}
Construire le schéma de réfraction d'une onde ayant une vitesse
incidente $v_1$ et une vitesse $v_2$ dans le second milieu, avec $v_1 =
1,5 v_2$ ; pour les angles d'incidence suivants :
\begin{enumerate}
\item i = 10°
\item i = 30 °
\item i = 41,5 °
\item i = 89°
\end{enumerate}
\subsubsection{Ex. 4}
Construire le schéma de réfraction d'une onde ayant une vitesse
incidente $v_1$ et une vitesse $v_2$ dans le second milieu, avec $v_2 =
2/3 v_1$ ; pour les angles d'incidence suivants :
\begin{enumerate}
\item i = 10°
\item i = 30 °
\item i = 41,5 °
\item Calculer l'angle limite de réfraction
\item Construire la propagation de l'onde pour un angle d'incidence i = 50
°
\end{enumerate}
\subsubsection{Ex. 5} % (N°8 du livre p 78)
Quel est l'angle d'incidence maximal pour qu'une onde sonore émise dans
l'air puisse être réfractée dans l'eau sans subir de réflexion totale à
la surface de l'eau ?
\subsubsection{Ex. 6} % ( N° 7 DU LIVRE P 78)
Dans un canal de navigation de 25 mètres de large, une onde; dont la
longueur d'onde est de 1,5 m,; se propage à la vitesse de 2 m/s. Que
devient cette longueur d'onde lorsque l'onde arrive dans une partie
moins profonde du canal où la vitesse de propagation est réduite à 1,6
m/s ?
\subsection{Résolutions}
\includegraphics[width=18.501cm,height=21.812cm]{Pictures/100000010000133200001AE8CBE600732ABF4D48.png}
\includegraphics[width=18.501cm,height=25.636cm]{Pictures/100000010000026D0000035C988B6F7E90298C6A.png}
\includegraphics[width=18.501cm,height=25.636cm]{Pictures/100000010000026D0000035C190239246DBF1AB2.png}
\includegraphics[width=18.501cm,height=25.636cm]{Pictures/100000010000026D0000035CCC97A4EC19D02B04.png}
\includegraphics[width=18.501cm,height=25.636cm]{Pictures/100000010000026D0000035CFF0F2F588EBA9209.png}
\includegraphics[width=18.501cm,height=25.527cm]{Pictures/1000000100000278000003689DDE3826ADE887B9.png}

View File

@ -0,0 +1,309 @@
\section{Diffraction des ondes}
Tant qu'une onde ne change pas de milieu ou ne rencontre pas
d'obstacles, elle se propage en ligne droite. Que se passe-t-il
lorsqu'elle passe près d'obstacles ?
Nous entendons facilement au milieu de la classe, des bruits venant du
couloir lorsque la porte est ouverte. De même, nous percevons très bien
des bruits provenant de l'extérieur et ce par une fenêtre ouverte.
Une onde ne devrait-elle pas être arrêtée par un obstacle~?
\subsection{Observations avec la cuve à onde. }
\subsubsection{Passage à travers une fente}
Considérons des ondes planes, produites dans une cuve à onde, come nous
l'avons vu au cours.
Les images ci-dessous sont vues de haut, les ondes se propagent du bas
vers le haut.
Nous les voyons passer à travers une fente \emph{de largeur que
nous noterons $x$}.
\subsubsection{Observation avec la cuve à ondes}
\includegraphics[width=4.546cm,height=3.468cm]{Pictures/1000000100000165000001102080785BE3C607F4.png}\includegraphics[width=7.895cm,height=6.091cm]{Pictures/10000001000002060000013F9C2B947BF01F091E.png}
\begin{figure}
\centering
\includegraphics[width=5.166cm,height=3.817cm]{Pictures/100000010000010C000000C6588B9A00B1CFD310.png}
\caption{}
\end{figure}
\begin{figure}
\centering
\includegraphics[width=8.348cm,height=5.408cm]{Pictures/10000001000002060000015BBB1606831ABACDE3.png}
\caption{}
\end{figure}
Comment expliquer que nous entendions facilement au milieu
de la classe, des bruits venant du couloir lorsque la porte est
ouverte~alors que nous savons que la propagation des ondes est
rectiligne~?
\subsection{Principe de Huygens.}
Pour expliquer ces observations, Huygens a élaboré une théorie
ondulatoire (1818) qui permet d'expliquer ce phénomène de diffraction.
TODO ajouter biographie de Huygens
Le principe de Huygens peut être énoncé comme~: « tout point atteint par une onde se
comporte comme une nouvelle source d'ondes circulaires de même
fréquence, c'est-à-dire que ce point génère des ondes circulaires de
même fréquence. »
\subsubsection{Une onde circulaire se propage de façon circulaire }
\begin{figure}
\centering
\includegraphics[width=5.369cm,height=3.551cm]{Pictures/10000001000001E8000001439B3D312A195F0A9A.png}
\caption{}
\end{figure}
Imaginons une goutte d'eau qui tombe à la surface de l'eau en un point
S. Une onde circulaire va se propager et atteindre les points S1, S2,
S3, S4, \ldots. Chacun de ces points atteints par l'onde va générer des
ondes circulaires de même fréquence (et donc de même longueur d'onde si
le milieu est inchangé).
C'est ainsi qu'une onde circulaire continue à se propager de façon
circulaire.
\includegraphics[width=3.461cm,height=5.323cm]{Pictures/1000000100000118000001AF621E98E90630327B.png}\emph{b)
Pourquoi une onde plane continue-t-elle à se propager de façon plane~? }
Soit une tige plane produisant des ondes planes. Le front d'ondes arrive
sur la ligne AB. En vertu du principe de Huygens, chaque point du
segment AB (S1, S2, S3, S4, S5) produit des ondes circulaires et nous
voyons que toutes ces ondes vont former finalement sur le segment A'B'
une onde plane.
Une onde plane se propage donc en restant une onde plane.
\subsubsection{Passage (ou non) derrière un obstacle. }
Au lieu de faire passer une onde à travers une fente, nous pouvons aussi
lui faire rencontrer un obstacle.
Nous l'avons observé avec la cuve à onde et vu que~:
\begin{itemize}
\item Si les dimensions de l'obstacle sont grandes devant la longueur
d'onde, l'onde ne contourne pas l'obstacle.
\item Si les dimensions de l'obstacle sont petites devant la longueur
d'onde, l'onde contourne l'obstacle.
\end{itemize}
\includegraphics[width=4.731cm,height=3.974cm]{Pictures/10000001000000CC000000ABB81AAF52FD11C7D3.png}\includegraphics[width=4.128cm,height=4.046cm]{Pictures/10000001000000CD000000C9CF0691AC9C53D126.png}
\subsubsection{Conclusions}
La diffraction est le comportement des ondes\footnote{\href{https://fr.wikipedia.org/wiki/Onde}}
lorsqu'elles rencontrent un obstacle ou une ouverture.
Plus la longueur d'une onde est grande par rapport aux
dimensions de l'obstacle (ou la largeur de l'ouverture), plus cette onde
aura de facilité à contourner (à envelopper) l'obstacle.
\subsection{Applications de la diffraction }
\includegraphics[width=7.108cm,height=5.267cm]{Pictures/100000010000012C000000DEA5F8143A7ED3E9C1.png}
\paragraph{Réception des ondes radio en fonction de la longueur d'onde}
Ainsi les grandes ondes radio (longueurs d'onde hectométriques et
kilométriques) peuvent pénétrer dans le moindre recoin de la surface
terrestre tandis que les retransmissions de télévision par satellite
(courtes longueurs d `ondes) ne sont possibles que si l'antenne de
réception «~voit~» le satellite.
\includegraphics[width=5.586cm,height=5.808cm]{Pictures/100000010000009E000000A4B38E4E23C937303B.png}
\paragraph{Les antennes paraboliques}
Pourquoi les réflecteurs des antennes paraboliques sont-ils de si
grandes dimensions~?
\begin{figure}
\centering
\includegraphics[width=5.166cm,height=5.269cm]{Pictures/10000001000001920000019ACA6FE085C34366DF.png}
\caption{}
\end{figure}
En plaçant la source S au foyer du réflecteur parabolique, on produit,
par réflexion, un faisceau parallèle de telle sorte que presque toute
l'énergie partira dans une seule direction (vers un satellite, vers un
relais, \ldots).
Il faut cependant que la longeur d'onde de l'onde émise soit plus petite
que le diamètre du réflecteur pour \emph{\textbf{éviter la diffraction}
(et donc que l'onde ne contourne pas le réflecteur)
Le remarque est identique pour des antennes paraboliques réceptrices
d'ondes.
\paragraph{Écholocation}
Certains animaux, dauphins, chauve-souris) émettent des ondes
acoustiques et ensuite captent les ondes réfléchies par les objets
environnants, détectant ainsi les obstacles et proies éventuelles. Il
faut pour cela que la longueur d'onde soit inférieure aux dimensions de
l'obstacle à détecter. (Il faut donc ici peu de diffraction et le
maximum de réflexion).
En effet, si la longueur d'onde était plus grande que les objets, il y
aurait trop de diffraction derrière celui-
ci et il y aurait peu d'onde
réfléchie.
C'est pour cela que les dauphins et chauve-souris émettent des ondes
acoustiques de fréquence élevée et donc de longueur d'onde très faible
pour \emph{éviter la diffraction}. Ces
ondes seront donc des ultrasons.
C'est aussi le principe du sonar et du radar.
\includegraphics[width=5.36cm,height=7.996cm]{Pictures/10000001000001570000020D95DCA793B8E9458C.png}
\subsection{Les dimensions d'un haut-parleur}
Un haut-parleur se comporte comme une fente traversée par une onde.
Un haut-parleur doit envoyer une onde de grande longueur d'onde devant
le diamètre du haut-parleur $x$ pour
favoriser la diffraction de façon à diffuser les sons dans un cône
assez ouvert.
\subsection{Exercices}
\subsubsection{Exercice 1}
Peut-on recevoir derrière une colline de 100
mètres de largeur des ondes radio de 30 000 Hz si l'émetteur se trouve
au bas de la colline~?
\subsubsection{Exercice 2}
Les chauves-souris émettent des sons de haute fréquence pour situer les
objets qui les entourent. La fréquence la plus élevée émise par une
espèce de chauve-souris est égale à 50 kHz. Quelles sont les dimensions
minimales des insectes qu'elle pourra détecter fiablement~?
\begin{figure}
\centering
\includegraphics[width=4.445cm,height=2.787cm]{Pictures/10000001000002E4000001CE9CDB74834F100431.png}
\caption{}
\end{figure}
\subsubsection{Exercice 3}
Une station radio émet sur une fréquence de 101 MHz.
Les habitants d'un village situé au fond d'une vallée, dont les
dimensions sont de l'ordre du kilomètre vont-il bien capter cette
station ?
\subsubsection{Exercice 4}
Pour se situer par rapport à d'éventuels obstacles, un dauphin produit
des ultrasons de fréquence f=40 kHz.
Quelle est la dimension de la plus petite proie que le dauphin peut
attraper, les yeux fermés ?
\includegraphics[width=10.084cm,height=4.142cm]{Pictures/10000001000001D1000000BF0020819CCFE94127.png}\emph{\textbf{EXERCICE
5 }
Des ondes ultrasonores de fréquence 2,00 MHz sont utilisées pour
réaliser l'échographie du cœur. Dans les tissus cardiaques, leur vitesse
de propagation est de l'ordre de 1,5 km/s.
Ces ondes peuvent-elle être diffractées par le cœur ?
\begin{figure}
\centering
\includegraphics[width=5.009cm,height=4.621cm]{Pictures/1000000000000301000002BCCF7FB7734DEACB0A.jpg}
\caption{}
\end{figure}
\subsubsection{Exercice 5}
L'échographie est une technique d'imagerie médicale fréquemment utilisée
notamment pour suivre le développement des fœtus et la détection
d~`anomalies éventuelles.
Un examen échographique est réalisé avec une sonde qui émet des
impulsions ultrasonores de fréquence 4 MHz. La vitesse des ondes dans le
milieu concerné est de 1540 m/s.
Cet examen fonctionne comme un sonar en numérisant à la fin le signal
réfléchi en image.
\begin{enumerate}
\item Explique pourquoi on utilise des ultrasons plutôt que des ondes de
plus petite fréquence
\item L'appareil décrit permet-il de détecter un embryon qui ne mesure que
5mm~? Justifie ta réponse
\end{enumerate}
\subsubsection{Exercice 5}
\includegraphics[width=4.445cm,height=2.787cm]{Pictures/10000001000002E4000001CE9CDB74834F100431.png}
Une
station radio émet sur une fréquence de 101 MHz.
Les habitants d'un village situé au fond d'une vallée, dont les
dimensions sont de l'ordre du kilomètre vont-il bien capter cette
station ?
\subsubsection{Exercice 6}
Pour se situer par rapport à d'éventuels obstacles, un dauphin produit
des ultrasons de fréquence f=40 kHz.
Quelle est la dimension de la plus petite proie que le dauphin peut
attraper, les yeux fermés ?
\subsubsection{Exercice 7 }
\begin{figure}
\centering
\includegraphics[width=10.084cm,height=4.142cm]{Pictures/10000001000001D1000000BF0020819CCFE94127.png}
\caption{}
\end{figure}
Des ondes ultrasonores de fréquence 2,00 MHz sont utilisées pour
réaliser l'échographie du cœur. Dans les tissus cardiaques, leur vitesse
de propagation est de l'ordre de 1,5 km/s.
Ces ondes peuvent-elle être diffractées par le cœur ?
\subsubsection{Exercice 8}
L'échographie est une technique d'imagerie médicale fréquemment utilisée
notamment pour suivre le développement des fœtus et la détection
d'anomalies éventuelles.
\includegraphics[width=5.009cm,height=4.621cm]{Pictures/1000000000000301000002BCCF7FB7734DEACB0A.jpg}
Un examen échographique est réalisé avec une sonde qui émet des
impulsions ultrasonores de fréquence 4 MHz. La vitesse des ondes dans le
milieu concerné est de 1540 m/s.
Cet examen fonctionne comme un sonar en numérisant à la fin le signal
réfléchi en image.
\begin{enumerate}
\item Explique pourquoi on utilise des ultrasons plutôt que des ondes de
plus petite fréquence
\item L'appareil décrit permet-il de détecter un embryon qui ne mesure que
5mm~? Justifie ta réponse
\end{enumerate}
\subsection{Résolutions}
\includegraphics[width=18.503cm,height=25.615cm]{Pictures/100000010000026F0000035E638B1FB4AD6FDEB0.png}
\includegraphics[width=18.503cm,height=25.476cm]{Pictures/10000001000002710000035C11CB153182C339CB.png}
\includegraphics[width=18.503cm,height=25.476cm]{Pictures/10000001000002710000035C11584AA390113327.png}

View File

@ -0,0 +1,281 @@
\section{Interférences}
Le phénomène d'interférence est du à la superposition de deux
ondes.
Il en résulte des zones où les ondes s'additionnent (zone de
tempête) et des zones où la superposition des ondes donne une amplitude
résultante nulle (zone de repos).
\includegraphics[width=8.326cm,height=3.881cm]{Pictures/10000001000001A4000000C3DDA5D7BD0B699726.png}
\subsection{Expérience avec la cuve à onde}
FIXME ajouter des descriptions d'expériences avec la cuve à ondes
Nous avons visualisé ce phénomène à l'aide de la cuve à ondes.
Pour ce faire, nous avons pris des pointes qui vibrent dans l'eau,
chacune produisant des ondes circulaires.
Nous avons obervé des endroits où l'eau est en mouvement et des endroits
où l'eau est au repos. Comment expliquer cette observation?
\subsubsection{Analyse théorique}
Prenons deux sources $S_1$ et $S_2$ émettant
en concordance de phase des ondes de même fréquence (on dira que les
sources sont alors \emph{cohérentes}).
\begin{figure}
\centering
\includegraphics[width=8.47cm,height=8.927cm]{Pictures/10000001000001DE000001F885F9EB969C92123B.png}
\caption{}
\end{figure}
Les cercles concentriques représentent les vagues vues de haut
\emph{(les cercles en traits pleins des crètes et les cercles en traits
pointillés des creux).}
Nous voyons bien que les 2 sources ($S_{1}$ et
$S__{2}$) émettent des ondes de même longueur d'onde et donc
de même fréquence.
Considérons le point M.
L'onde produite par $S_1$ a parcouru une distance
$d_1$ pour arriver en M et l'onde produite par
$S_2$ a parcouru une distance $d_2$ pour
arriver en M. Les deux ondes arrivent donc au point M avec un déphasage
puisqu'elle n'ont pas parcouru la même distance.
Dans notre exemple ci-contre :
\begin{enumerate}
\item La distance $d_1$ parcourue par l'onde provenant de
$S_1$ jusque M est égale à $3 \cdot \frac{1}{2}$ (trois demi-longueur
d'onde). Regardez sur le schéma.
\item La distance $d_2$ parcourue par l'onde provenant de
$S_2$} jusque M est égale à $4 \cdot \frac{1}{2}$(quatre demi-longueur
d'onde).
\item Les deux ondes arrivent donc en M décalées de $\frac{4}{2} - \frac{3}{2} = \frac{1}{2} $
\end{enumerate}
Elles sont donc au point M en opposition de phase l'une par rapport à
l'autre. En effet, au point M, l'onde provenant de $S_1$
est une crète tandis que l'onde provenant de $S_2$ est un
creux. Donc, au point M, l'eau sera au repos. On parlera
\emph{d'interférence destructive.}
Nous appelerons \textbf{$d_2 - d_1 = \Delta_{12}, \emph{la différence de
marche.}
\includegraphics[width=9.596cm,height=10.112cm]{Pictures/10000001000001DE000001F885F9EB969C92123B.png}
Considérons le point N.
L'onde produite par $S_1$ a parcouru une distance
d\textsubscript{1} pour arriver en N et l'onde produite par
$S_2$ a parcouru une distance d\textsubscript{2} pour
arriver en N. Les deux ondes arrivent donc au point M avec un déphasage.
\begin{enumerate}
\item La distance $d_1$ parcourue par l'onde provenant de
$S_1$ jusque M est égale à $5 \frac{1}{2}$ (cinq demi-longueur
d'onde). Regardez sur le schéma.
\item La distance $d_2$ parcourue par l'onde provenant de
$S_2$ jusque N est égale à $75 \frac{1}{2}$ (sept demi-longueur
d'onde).
\item Les deux ondes arrivent donc en M décalées de ($\frac{7}{2} - \frac{5}{2} = \frac{2}{2}$ longueur d'ondes.
\end{enumerate}
Elles sont donc au point N en concordance de phase l'une par rapport à
l'autre. En effet, au point N, l'onde provenant de $S_1$
est une crète et de même, l'onde provenant de $S_2$ est une
crète. Donc, au point N, deux crètes vont se superposer, ce qui donnera
de l'eau en mouvement avec une amplitude double par rapport aux
amplitudes des sources. On parlera \emph{d'interférence
constructive.}
\subsection{Représentations}
\includegraphics[width=7.264cm,height=8.423cm]{Pictures/100000010000021B000002719784CD0CAF081F55.png}
\subsubsection{Hyperboles de repos et hyperboles de tempête}
Pour expliquer les zones de tempête et de repos, observez attentivement
le schéma ci-contre :
\begin{enumerate}
\item En chaque point d : chaque point d est atteint par un creux (cercle en pointillé)
et une crète (cercle en trait plein), la résultante du
mouvement nous donne donc une \textbf{zone de repos.} Vous pouvez ainsi
observer ces courbes (ce sont des hyperboles) où l'eau au repos.
\itemEn chaque point c : Chaque point c est atteint par soit deux creux (cercles en pointillé, soit deux crètes (cercles en trait plein), la résultante du mouvement nous donne donc une \textbf{zone de tempête.} Vous pouvez ainsi observer ces courbes (ce sont des hyperboles) où l'eau est en mouvement.
\end{enumerate}
\begin{figure}
\centering
\includegraphics[width=13.005cm,height=3.542cm]{Pictures/1000000100000220000000A31734CD7DA5F285B4.png}
\caption{}
\end{figure}
\subsection{Exercices}
\subsubsection{Ex. 1}
Soient deux sources sonores ponctuelles S1 et S2. Elles envoient des
ondes en concordance de phase, dont la fréquence est égale à 5 Hz et qui
se propagent à la vitesse de 10 cm/s. L'amplitude de chacune des ondes
est de 3cm
Calculez l'amplitude d'un point P situé à 6 cm de S1 et à 8 cm de S2~?
\subsubsection{Ex. 2}
Deux haut-parleurs séparés de 2 m émettent un signal à 680 Hz en phase.
Un microphone est placé à 6,75 m de l'un et à 7 m de l'autre. Quelle est
l'amplitude du signal mesuré~?
\subsubsection{Ex. 3}
\begin{figure}
\centering
\includegraphics[width=5.151cm,height=2.729cm]{Pictures/10000001000000BC000000630AF71C86AA2A0A65.png}
\caption{}
\end{figure}
Deux haut-parleurs S1 et S2 distants de 6 m émettent des
ondes sonores en concordance de phase. Le point P de la
figure est à 8 m de S1. Quelle est la fréquence minimale
à laquelle l'intensité en P est~:
\begin{enumerate}
\item nulle~?
\item maximale~?
\end{enumerate}
\subsubsection{Ex. 4}
\includegraphics[width=9.146cm,height=5.973cm]{Pictures/100000010000062500000404B4675BF2C4CE1EEC.png}
Deux
petits haut-parleurs distants de 3 mètres émettent des sons de fréquence
constante de 344 Hz dans une pièce surchauffée. On déplace un microphone
P le long d'une droite parallèle à la ligne S1S2 joignant les deux
haut-parleurs et située à 4 mètres de cette ligne. On trouve deux maxima
d'intensité~: le premier au point O, équidistants des deux haut-parleurs
et le second juste en face de l'un d'eux.
Utilisant ces données, calculer la vitesse du son dans cette pièce
surchauffée
( rappel~: la vitesse du son dans l'air est de 340 m/s à une température
de 20°C)
\subsubsection{Ex. 5}
\includegraphics[width=11.546cm,height=4.688cm]{Pictures/1000000100000363000001603D3E7105AB252F90.png}
Les
deux haut-parleurs montrés sur la figure émettent, en phase, un son
ayant une longueur d'onde de 25 cm. Quelle est la distance minimale d
entre les haut-parleurs qu'il doit y avoir pour qu'il y ait de
l'interférence destructive pour l'observateur?
\subsubsection{Ex. 6}
\begin{figure}
\centering
\includegraphics[width=4.757cm,height=7.147cm]{Pictures/10000001000001BA00000298E2F6E319C348E061.png}
\caption{}
\end{figure}
Les haut-parleurs de la figure émettent des ondes sonores en concordance
de phase. Quelle est la fréquence minimale qui permet d'obtenir de
l'interférence destructive à l'endroit où est situé l'observateur?
\emph{\textbf{INTERFERENCES - EXERCICES}}
\subsubsection{Ex. 1}
Soient deux sources sonores ponctuelles S1 et S2. Elles envoient des
ondes en concordance de phase, dont la fréquence est égale à 5 Hz et qui
se propagent à la vitesse de 10 cm/s. L'amplitude de chacune des ondes
est de 3cm
Calculez l'amplitude d'un point P situé à 6 cm de S1 et à 8 cm de S2~?
\subsubsection{Ex. 2}
Deux haut-parleurs séparés de 2 m émettent un signal à 680 Hz en phase.
Un microphone est placé à 6,75 m de l'un et à 7 m de l'autre. Quelle est
l'amplitude du signal mesuré~?
\subsubsection{Ex. 3}
\begin{figure}
\centering
\includegraphics[width=5.151cm,height=2.729cm]{Pictures/10000001000000BC000000630AF71C86AA2A0A65.png}
\caption{}
\end{figure}
Deux haut-parleurs S1 et S2 distants de 6 m émettent des
ondes sonores en concordance de phase. Le point P de la
figure est à 8 m de S1. Quelle est la fréquence minimale
à laquelle l'intensité en P est~:
\begin{enumerate}
\item nulle~?
\item maximale~?
\end{enumerate}
\subsubsection{Ex. 4}
Deux petits haut-parleurs distants de 3 mètres émettent des sons de
fréquence constante de 344 Hz dans une pièce surchauffée. On déplace un
microphone P le long d'une droite parallèle à la ligne S1S2 joignant les
deux haut-parleurs et située à 4 mètres de cette ligne. On trouve deux
maxima d'intensité~: le premier au point O, équidistants des deux
haut-parleurs et le second juste en face de l'un d'eux.
Utilisant ces données, calculer la vitesse du son dans cette pièce
surchauffée
( rappel~: la vitesse du son dans l'air est de 340 m/s à une température
de 20°C)
\begin{figure}
\centering
\includegraphics[width=15.663cm,height=10.231cm]{Pictures/100000010000062500000404B4675BF2C4CE1EEC.png}
\caption{}
\end{figure}
\subsubsection{Ex. 5}
\includegraphics[width=11.546cm,height=4.688cm]{Pictures/1000000100000363000001603D3E7105AB252F90.png}
Les
deux haut-parleurs montrés sur la figure émettent, en phase, un son
ayant une longueur d'onde de 25 cm. Quelle est la distance minimale d
entre les haut-parleurs qu'il doit y avoir pour qu'il y ait de
l'interférence destructive pour l'observateur?
\includegraphics[width=4.757cm,height=7.147cm]{Pictures/10000001000001BA00000298E2F6E319C348E061.png}
\subsubsection{Ex. 6}
Les haut-parleurs de la figure émettent des ondes sonores en phase.
Quelle est la fréquence minimale qui permet d'obtenir de l'interférence
destructive à l'endroit où est situé l'observateur?
\subsection{Résolutions}
\includegraphics[width=18.253cm,height=25.273cm]{Pictures/100000010000027000000360A2E9B52B5C1C825B.png}
\includegraphics[width=18.253cm,height=25.273cm]{Pictures/100000010000027000000360F8FFC5B3763173F1.png}
\includegraphics[width=18.253cm,height=25.273cm]{Pictures/100000010000027000000360FFD6C2C9381DA208.png}
\includegraphics[width=18.253cm,height=25.273cm]{Pictures/1000000100000270000003604BA27A8CAE787E63.png}

View File

@ -0,0 +1,195 @@
\section{LES ONDES ELECTROMAGNETIQUES}
%REFERENCE~: LIVRE PAGES 141 à 156
\subsection{Mise en situation}
\begin{figure}
\centering
\includegraphics[width=7.297cm,height=4.45cm]{Pictures/10000001000000B7000000703138DA7480AE6A8A.png}
\caption{}
\end{figure}
Soit un premier circuit constitué d'une bobine soumise à une différence
de potentiel variable (courant alternatif).
Une seconde bobine, placée à quelques centimètres de la première n'est
pas raccordée à une source de courant mais est raccordée à un
ampèremètre (appareil qui mesure l'intensité du courant qui traverse le
circuit).
Nous observons que l'ampèremètre mesure un courant alternatif de même
fréquence que la fréquence du courant alternatif du premier circuit.
\subsection{Interprétation}
\emph{Une énergie s'est donc propagée, à travers l'air, du
premier circuit vers le deuxième.} Cette énergie a permis aux électrons
libres du second circuit de se déplacer et donc de créer un courant,
alternatif lui aussi.
(Soit dit en passant, c'est ainsi que fonctionnent les ondes radio, Gsm, \ldots. Nous les appellerons les ondes électromagnétiques).
\emph{MAIS QUELLE EST DONC CETTE FORME D'ENERGIE~? }
\emph{Rappel~:}
\emph{Une charge électrique produit dans son environnement un champ
électrique. }
\emph{Un champ électrique est une région de l'espace au sein de laquelle
une charge témoin subit une force. }
Les électrons libres du premier circuit oscillent (il s'agit d'un
courant alternatif) et donc ils produisent un champ électrique variable
dans l'espace. Les électrons libres du second circuit sont donc soumis à
cette variation de champ électrique, ils subissent la force électrique
variable et entrent en oscillation.
\subsubsection{Rappel~:}
\emph{Un courant électrique produit dans son environnement un champ
magnétique.}
\emph{Une variation de champ magnétique à l'intérieur d'une bobine
induit un courant électrique variable. }
Les électrons libres du premier circuit oscillent (il s'agit d'un
courant alternatif) et donc ils produisent un champ magnétique variable
dans l'espace. La seconde bobine est donc le siège d'un courant induit
variable.
\subsection{Spéculations de Maxwell}
Lorsque des charges en mouvement oscillent, elles produisent donc à la
fois un champ électrique et un champ magnétique variables dans le temps.
Maxwell a appelé \emph{ONDE ELECTROMAGNETIQUE cette propagation d'une
énergie stockée sous forme électrique et magnétique et produite par des
charges électriques oscillantes. }
\includegraphics[width=15.993cm,height=4.634cm]{Pictures/10000001000001DF0000008BE924D8E1387D9253.png}
Les équations écrites par Maxwell (1865) montrent que le champ
électrique \[\overrightarrow{E}{}\] et le champ
magnétique\[\overrightarrow{B}{}\], engendrés par des charges
oscillantes (ici, un courant alternatif) ont les propriétés suivantes~:
\begin{itemize}
\item Ils oscillent sinusoïdalement à la fréquence du courant.
\item Ils transportent de l'énergie sous forme électrique et magnétique
(électromagnétique donc).
\item Ils sont perpendiculaires entre eux.
\end{itemize}
\emph{\textbf{Une onde électromagnétique est donc une forme d'énergie
qui se propage sous forme de «~paquet d'énergie~électromagnétique»,
produite par des charges oscillant à une certaine fréquence. Ce «~paquet
d'énergie~» est appelé un photon. }}
\subsection{Confirmation expérimentale}
En 1887, Hertz confirme expérimentalement les spéculations de Maxwell.
Utilisant des courants alternatifs de haute fréquence, il crée des ondes
électromagnétiques de longueur d'onde de l'ordre du mètre~: ce sont les
premières ondes hertziennes.
Poursuivant l'œuvre de Hertz, des physiciens (Marconi, Popov, Branly,
\ldots) contribuèrent à la mise au point d'un télégraphe sans fil. Cette
technique deviendra la base de la radiodiffusion et de ses prolongements
célèbres que sont la télévision et la mobilophonie.
Par la suite, on a montré que ces ondes peuvent être réfléchies,
réfractées, diffractées et qu'elles donnent lieu à des phénomènes
d'interférences. Elles ont un comportement ondulatoire, d'où leur nom
d'ondes électromagnétiques.
De plus, elles se déplacent toutes à la vitesse de la lumière.
\subsection{Gamme des ondes électromagnétiques}
La famille des ondes électromagnétiques peut être divisée en différentes
catégories~: chaque catégorie ayant son mode de production, de détection
et son domaine d'applications.
Chacune de ces catégories est caractérisée par une gamme de fréquence f
(et donc de longueur d'onde). Au plus la fréquence est grande, au plus
l'énergie de l'onde électromagnétique est grande.
Toutes les ondes électromagnétiques se déplacent à la vitesse de la
lumière au sein d'un milieu ou dans le vide.
\begin{figure}
\centering
\includegraphics[width=11.425cm,height=14.616cm]{Pictures/1000000100000147000001C0C9C8D746CD882C9F.png}
\caption{}
\end{figure}
\begin{figure}
\centering
\includegraphics[width=17.233cm,height=6.184cm]{Pictures/100000010000037D0000014014F58CF6D7F0CE8B.png}
\caption{}
\end{figure}
En partant des ondes les plus
énergétiques (de plus grande fréquence), on distingue successivement :
\begin{itemize}
\item
\emph{\textbf{Les rayons gamma }}\textbf{(}γ\textbf{) :} ils sont dus
aux radiations émises par les éléments radioactifs.\\
Très énergétiques, ils traversent facilement la matière et sont très
dangereux pour les cellules vivantes en cas d'excès.\\
\item \textbf{Les rayons X} : rayonnements très énergétiques
traversant plus ou moins facilement les corps matériels et un peu
moins nocifs que les rayons gamma. Ils sont utilisés notamment en
médecine pour les radiographies, dans l'industrie (contrôle des
bagages dans le transport aérien) et dans la recherche pour l'étude de
la matière (rayonnement synchrotron).\\
\item \textbf{Les ultraviolets} : rayonnements qui restent
assez énergétiques. Heureusement pour nous, une grande part des
ultraviolets émis par le soleil est stoppée par l'ozone atmosphérique
qui sert de bouclier protecteur.
\item \textbf{Le domaine visible}: correspond à la partie
très étroite du spectre électromagnétique perceptible par notre œil.
Il s'agit de la lumière visible.\\
\emph{Il s'étend de 400 nm (lumière bleue) à 800 nm (lumière rouge).}
\item \textbf{L'infrarouge} : rayonnement émis par tous les
corps dont la température est supérieure au zéro absolu (-273°C).\\
En télédétection, on utilise certaines bandes spectrales de
l'infrarouge pour mesurer la température des surfaces terrestres et
océaniques, ainsi que celle des nuages.
\item \textbf{Les micro-ondes~}:
\begin{itemize}
\item \textbf{La télécommunication par satellite.}
\item \textbf{Les ondes radar~}: notamment utilisées en navigation
maritime et aérienne. Dans la même gamme de fréquence, on trouve les
ondes émises par les clés de verrouillage/déverrouillage automatique
des portes de voiture.
\item \textbf{Dans les fours à micro-ondes} de cuisine, les molécules
d'eau entrent en résonance et oscillent avec une grande amplitude.
Cette énergie d'oscillation est rapidement transformée en énergie
thermique par collisions avec les autres molécules.
\item \textbf{Wi-Fi} (Wireless Fidelity).
\item \textbf{Bluetooth}.
\item
La téléphonie mobile~: ondes \textbf{GSM} (Global System Mobile).
\end{itemize}
\item \textbf{Les ondes hertziennes} : Ce domaine de
longueurs d'onde concerne les ondes qui ont les plus basses
fréquences. Il s'étend des longueurs d'onde de quelques cm à plusieurs
km.
\begin{itemize}
\item \textbf{Les ondes en télévision~}: transmission des images en
télévision.
\item \textbf{Les ondes radio~}: relativement faciles à émettre et à
recevoir, les ondes radio sont utilisées pour la transmission de
l'information (radio).
\end{itemize}
\end{itemize}
Nous sommes entourés d'ondes électromagnétiques au niveau domestique~: une petite illustration.
\begin{figure}
\centering
\includegraphics[width=15.847cm,height=10.767cm]{Pictures/10000001000002D5000001ED5EE60B9D153FD951.png}
\caption{}
\end{figure}

View File

@ -0,0 +1,692 @@
\section{Effet photoélectrique et lumière}
\subsubsection*{Théorie quantique}
%\subsubsection*{Pages 222 à 236 du livre}
Nous savons à présent que la lumière visible est une onde
électromagnétique, due à des oscillations de charges électriques à des
fréquences comprises entre $4 10^{14} \siunit{Hz}$ et
$8 10^{14} \siunit{Hz} $
(voir spectre électromagnétique).
\subsubsection{Production de la lumière}
\emph{Quelles sont ces charges oscillantes responsables de l'émission de
lumière~?}
\begin{figure}
\centering
\includegraphics[width=11.557cm,height=4.957cm]{Pictures/100000010000035A00000170D87D5DDA82610A97.png}
\caption{}
\end{figure}
L'émission de lumière par un atome ou une molécule est un
\textbf{phénomène électronique},
provoqué par l'oscillation des électrons atomiques.
Dans un atome chaque électron se trouve sur une orbitale et donc possède
des niveaux d'énergie quantifiés (les niveaux d'énergie ont des valeurs
précises). C'est le modèle de Bohr (fig. 1).
De l'énergie incidente sur la surface d'un objet excite certains
électrons des atomes. L'électron peut passer d'un niveau inférieur vers
un niveau d'énergie plus élevée en absorbant cette énergie (fig. 2). On
parlera d'absorption.
Ces électrons excités retournent très rapidement à un état stable en
perdant l'énergie accumulée sous forme de rayonnement qui est une onde
électromagnétique à savoir un «~paquet d'énergie~électromagnétique~» ou
photon (fig. 3). On parlera d'émission.
Le rayonnement émis peut-être situé dans le visible, mais aussi dans
l\textbf{\textbf{'}\textbf{infrarouge} }ou\textbf{
}l\textbf{\textbf{'ultraviolet}, }tout dépend de la différence d'énergie
entre les deux niveaux lors de la transition électronique.
L'énergie incidente peut provenir~:
\begin{itemize}
\item
de matériaux chauffés.
\item
d'un courant électrique appliqué entre des électrodes placées à chaque
extrémité d'un tube (tube néon).
\end{itemize}
Chaque atome émet une couleur qui lui est propre car la répartition
électronique en couches (modèle de Bohr) est caractéristique de chaque
élément du tableau périodique.
\begin{figure}
\centering
\includegraphics[width=5.856cm,height=4.186cm]{Pictures/10000000000001F4000001658D0506E7D72323B2.jpg}
\caption{}
\end{figure}
\subsubsection{Interaction lumière-matière - l'effet photoélectrique}
C'est 1887, à l'occasion de ses recherches pour prouver l'existence des
ondes électromagnétiques, que le physicien allemand Hertz mis en
évidence l'effet photoélectrique.
Dans cet effet, \textbf{de la lumière qui arrive sur un métal provoque
l'éjection d'électrons présents dans le métal~: il s'agit de l'effet
photoélectrique. }
C'est le principe de fonctionnement des cellules photoélectriques.
\begin{figure}
\centering
\includegraphics[width=6.638cm,height=4.852cm]{Pictures/10000001000001AD0000013AB85194CC89C1758C.png}
\caption{}
\end{figure}
\subsubsection{La cellule photoélectrique }
De la lumière (de fréquence f ) arrive sur un métal (la cathode C) et
provoque l'éjection d'électrons présents dans le métal. Ces électrons
animés d'une vitesse
\includegraphics[width=0.331cm,height=0.401cm]{Pictures/10000001000000090000000BEA16D6AB6A907BC0.png}
vont produire un courant électrique dans le circuit.
(Rappel~: le sens conventionnel du courant est de sens opposé au sens de
déplacement des électrons).
\subsubsection{Propriétés de l'effet photoélectrique. }
On conçoit bien que la lumière, onde électromagnétique, puisse interagir
avec la surface du métal en y faisant vibrer les électrons peu liés pour
finalement en arracher.
\emph{a) Influence de l'intensité de la lumière :}
L'intensité du courant électrique mesuré (et donc l'effet
photoélectrique) est d'autant plus grand que l'intensité de la lumière
incidente est grande. (L'intensité lumineuse est l'énergie reçue par
unité de surface et par unité de temps. Elle se mesure en
W/m\textsuperscript{2}.)
Eclairer plus intensément correspond à envoyer davantage d'énergie vers
la surface du métal et permet logiquement d'augmenter l'intensité du
courant électrique.
\emph{b) Influence de la nature du métal :}
Chaque métal présente une force de cohésion caractéristique du métal et
l'énergie nécessaire pour arracher un électron dépend logiquement du
métal en présence.
\emph{c) Influence de la fréquence de la lumière :}
Pour chaque métal éclairé, il existe une fréquence de seuil
(f\textsubscript{0}) en dessous de laquelle l'effet photoélectrique ne
se produit pas, \textbf{quelle que soit l'intensité lumineuse, même très
intense.}
Le modèle ondulatoire de la lumière ne permet pas d'expliquer cela.
\subsubsection{Hypothèse du photon d'Einstein. }
Albert Einstein proposa en 1905 une hypothèse révolutionnaire pour
expliquer l'effet photoélectrique.
Selon Einstein, l'énergie lumineuse n'atteint pas une surface de manière
continue, c'est-à-dire à tout moment et partout sur la surface (comme le
prévoit le modèle ondulatoire) mais est cédée à la surface de manière
discontinue, tant du point de vue spatial (au même instant, l'énergie
n'arrive pas partout) que du point de vue temporel (en un point donné,
l`énergie n'arrive qu'à certains instants).
L'absorption de l'énergie lumineuse par une surface peut être comparée à
l'arrivée de projectiles. Elle ne peut se faire que par quantités
indivisibles, appelées quanta ou encore photons.
L'énergie lumineuse transférée à la matière est toujours celle d'un
nombre entier de photon. On dit que cette énergie est quantifiée (on
parlera de la théorie quantique).
Cette énergie dépend de la fréquence comme le montre l'effet
photoélectrique.
\subsubsection{Explication de l'effet photoélectrique~:} lors de
l'interaction lumière-matière, lorsque la lumière atteint la plaque
métallique~:
\begin{itemize}
\item \textbf{un photon} cède toute son énergie à \textbf{un électron}. Le
photon, quanta d'énergie («~paquet d'énergie~»), est complètement
absorbé et disparaît.
\item Un électron ne peut pas accumuler l'énergie de plusieurs photons.
\item Pour arracher un électron de la plaque métallique, il faut lui
communiquer au minimum une énergie W appelée travail d'extraction
(énergie nécessaire pour rompre la liaison).
\end{itemize}
\subsubsection*{Conclusion}
\begin{itemize}
\item si $h f < W$ (si l'énergie d'un photon est inférieure au travail
d'extraction), l'énergie communiquée à l'électron est insuffisante,
même si beaucoup de photons arrivent et aucun électron ne sera
arraché. Ceci explique l'existence de la fréquence seuil.
\item Si $h f > W$ , des électrons sont éjectés de la surface métallique. Une
partie de l'énergie hf est utilisée pour arracher l'électron hors du
métal~; l'excédent d'énergie est emporté par l'électron sous forme
d'énergie cinétique (Ec).
\item Le principe de conservation d'énergie nous permet d'écrire~:
\end{itemize}
L'énergie incidente d'un photon se transforme en énergie d'extraction de
l'électron plus l'énergie cinétique qu'aura l'électron : $h f = W + E_c$
\subsubsection{Confirmation expérimentale }
\begin{figure}
\centering
\includegraphics[width=11.102cm,height=11.633cm]{Pictures/10000001000001F0000002085D0C02E9A126192D.png}
\caption{}
\end{figure}
\textbf{Mesure expérimentale de la constante de Planck}
\textbf{(ET DEUX PRIX NOBEL~: EINSTEIN EN 1921 ET PLANCK EN 1923)}
Le physicien américain Millikan apporta la confirmation expérimentale de
l'hypothèse d'Einstein en déterminant pour un même métal, la variation
de l'énergie cinétique des électrons arrachés en fonction de la
fréquence de la lumière monochromatique incidente.
\begin{itemize}
\item
L'équation de cette droite est bien~:
\end{itemize}
Ec = h(f-f\textsubscript{0})  hf = W + Ec
où h est la pente et a été mesurée expérimentalement~(constante de
Planck) h :
\begin{itemize}
\item
Chaque métal a une fréquence seuil qui lui est propre.
\end{itemize}
Nous pouvons remarquer sur le graphique que si f = f\textsubscript{0},
alors Ec = 0.
L'énergie du photon incident sera juste suffisante pour arracher
l'électron et ne sera pas suffisante pour encore lui communiquer une
énergie cinétique.
\subsubsection{Comportement quantique de la lumière}
Certains phénomènes (réfraction, diffraction, interférences) ne sont
explicables que par le modèle ondulatoire, d'autres que par le modèle du
photon qui a un comportement corpusculaire.
La lumière se comporte tantôt comme une onde, tantôt comme des
particules.
Finalement, quel est le bon modèle~?
Il est incorrect de dire « la lumière est une onde » ou « la lumière est
une particule ».
En réalité, il n'y a pas de modèle unique pour la lumière.
L'ensemble des comportements de la lumière ne peut s'expliquer ni par
l'un, ni par l'autre des deux modèles. Les deux sont nécessaires, tantôt
c'est l'un qui est efficace, tantôt, c'est l'autre.
\subsubsection{Énergie lumineuse}
Les ondes électromagnétiques transportent de l'énergie, elles sont dites
«~rayonnantes~». C'est la seule forme d'énergie qui peut se propager
dans le vide, en l'absence de matière.
L'énergie lumineuse fait partie des énergies dites « rayonnantes ».
L'énergie lumineuse est proportionnelle au nombre de photons émis (N).
Or chaque photon transporte une énergie qui est proportionnelle à sa
fréquence (E=hf)
Donc, l'énergie lumineuse transportée sera~:
\includegraphics[width=5.433cm,height=2.893cm]{Pictures/10000001000002AE00000146D8BC2B71B32E2C49.png}\emph{\textbf{3
-- QU'EST CE QUE LA LUMIERE~? }
\begin{itemize}
\item
La lumière est une onde électromagnétique, dont la longueur d'onde,
comprise entre 400 et 800 nm, correspond à la zone de sensibilité de
l'œil humain, entre l'ultraviolet et l'infrarouge.
\end{itemize}
\begin{figure}
\centering
\includegraphics[width=2.847cm,height=2.916cm]{Pictures/10000001000000A4000000A84DE8EBE1FCDB0C87.png}
\caption{}
\end{figure}
\begin{itemize}
\item
Elle est produite par l'oscillation des électrons atomiques.
\end{itemize}
\begin{itemize}
\item
Elle constituée d'un ensemble de photons qui sont des quanta d'énergie
électromagnétique.
\end{itemize}
L'énergie d'un photon dépend de la fréquence.
\begin{itemize}
\item
L'énergie radiative de la lumière est~:
\end{itemize}
\begin{itemize}
\item
\includegraphics[width=3.861cm,height=2.281cm]{Pictures/10000001000001D40000010F4347AFBBBD12FC87.png}À
l'inverse des ondes mécaniques (son, vagues,\ldots), la lumière, comme
toutes les ondes électromagnétiques, n'a pas besoin de support pour se
propager. Elle peut se déplacer dans le vide et dans un milieu
transparent (eau, verre,~\ldots).
\end{itemize}
Dans un milieu transparent donc hors du vide, elle se propage moins vite
(cfr. expérience de Young).
On définit l'indice de réfraction du milieu comme étant le rapport de la
vitesse de la lumière dans le vide sur sa vitesse dans le milieu.
(n=c/v)
\begin{itemize}
\item
La \textbf{lumière est composée} de photons (particules), mais elle
possède les propriétés d'une onde. Elle a un comportement quantique,
c'est-à-dire :
\end{itemize}
- La lumière \emph{\textbf{se propage}} \emph{\textbf{comme une onde }}:
elle distribue son énergie dans l'espace de manière continue, comme une
onde. Elle est soumise aux lois de la réflexion, réfraction, diffraction
et interférences.
- La lumière \emph{\textbf{interagit avec la matière de façon discrète}}
: elle échange de l'énergie avec la matière de façon
\textbf{discontinue}, un photon à la fois. L'énergie d'un photon est
proportionnelle à la fréquence.
\subsubsection{Photons et appplications}
% ( Lire p 230 à 236)}
Quelques applications importantes dans la vie quotidienne de l'effet phptoélectrique sont~:
\begin{enumerate}
\item les cellules photoélectriques
\item les panneaux photovoltaïques
\item les diodes LED (pour light emission diod)
\end{enumerate}
\subsection{Exercices}
\subsection{Ex. 1}
Une station de radio a une puissance émettrice de 400 kW à 100 MHz.
Combien de photons par seconde sont émis~? (Rép~:
$6.10^{30}$ photons/s)
\subsection{Ex. 2}
Le travail d'extraction d'un électron est de $3,6.10^{-19} \siunits{J}$ pour le potassium.
Soit un faisceau de longueur d'onde égale à 400 nm
qui a une puissance de $10^{-9} \siunits{W}$. Calcule~:
\begin{enumerate}
\item L'énergie cinétique des électrons émis. $(Rép~:
1,37.10^{-19} J)$
\item Le nombre d'électrons émis par mètre carré et par seconde à partir de
la surface où se produit l'effet photoélectrique, en supposant que 3\%
des photons incidents parvient à éjecter des électrons. (Rép~:
$6.10^7$ électrons/s)
\end{enumerate}
\subsection{Ex. 3}
Le seuil photoélectrique de longueur d'onde pour le césium est de 686
nm. Si de la lumière de longueur d'onde égale à 470 nm éclaire la
surface, quelle est la vitesse maximale des électrons émis~? (Rép~:
$5,4.10^5 m/s$)
\subsection{Ex. 4}
Soit un rayonnement de longueur d'onde de 200 nm tombant sur du mercure
pour lequel le travail d'extraction est de 7,2.10\textsuperscript{-19}J.
Quelle est l'énergie cinétique des électrons éjectés~? (Rép~:
$2,74.10^{-19}$ J)
\subsection{Ex. 5}
Lorsqu'un métal est éclairé par de la lumière de fréquence f, l'énergie
cinétique maximale des électrons est de $2,08.10^{-19}$ J.
Lorsqu'on augmente la fréquence de 50\%, l'énergie cinétique maximale
augmente jusqu'à $5,77.10^{-19}$ J.
Quelle est la fréquence seuil de ce métal~? (Rép~: $7,9.10^{14}$ Hz)
\subsection{Ex. 6}
De la lumière bleue (λ = 470 nm) ayant une intensité de 200 W/m² pénètre
dans un œil. Combien de photons entrent dans l'œil par seconde si la
pupille a un diamètre de 5 mm? (Rép~: 9,3.10\textsuperscript{15
}photons/s)
\subsection{Ex. 7}
Lors d'une expérience sur l'effet photoélectrique, on a recueilli les
valeurs suivantes pour la longueur d'onde de la lumière incidente et
l'énergie cinétique des électrons émis
\begin{longtable}[]{@{}llllll@{}}
(nm) & 500 & 450 & 400 & 350 & 300\tabularnewline
Ec (10\textsuperscript{-19} J) & 0,59 & 1,04 & 1,60 & 2,19 &
3,20\tabularnewline
\end{longtable}
Utilise ces données pour calculer \emph{\textbf{graphiquement}} la
valeur de la constante de Planck.
\subsection{Ex. 8}
La longueur d'onde du seuil photoélectrique d'un matériau métallique est
de 360 nm. Quelle est la vitesse maximale des électrons émis si on
utilise des photons de 280 nm de longueur d'onde~? (Rép~:
6.10\textsuperscript{5} m/s)
\subsection{Ex. 9}
De la lumière ayant une longueur d'onde de 450 nm et une intensité de 40
W/m² arrive sur un métal. Combien d'électrons sont éjectés par seconde
et par centimètre carré de surface si seulement 3 \% des photons qui
arrivent sur le métal éjecte un électron?
(Rép~: 2,7.10\textsuperscript{14} électrons/s)
\subsection{Ex. 10}
Lorsqu'un métal est éclairé par de la lumière de fréquence f, l'énergie
cinétique maximale des électrons est de 2,08.10\textsuperscript{-19} J.
Lorsqu'on augmente la fréquence de 50\%, l'énergie cinétique maximale
augmente jusqu'à 5,77.10\textsuperscript{-19} J.
a) Quelle est la fréquence de la source~?
(Rép~:1,1.10\textsuperscript{15} Hz)
b) Sachant que le spectre visible est situé entre 400 nm et 800 nm, la
lumière utilisée est-elle dans le spectre visible, dans la gamme des
ultraviolets ou dans la gamme des infrarouges~? (Rép~: UV)
\subsection{Ex. 11}
Lorsqu'on éclaire une surface avec de la lumière d'une fréquence égale à
7.10\textsuperscript{14 }Hz, les électrons émis ont une vitesse de
5,2.10\textsuperscript{5} m/s. Quelle est la fréquence seuil du métal?
(Rép~: 5,14.10\textsuperscript{14} Hz)
\subsection{Ex. 12}
De la lumière jaune (λ = 585 nm) ayant une intensité de 50 W/m² arrive
sur un mur ayant une surface de 3 m². Combien de photons arrivent sur le
mur en 20 secondes?
(Rép~: 8,8.10\textsuperscript{21} photons/s)
\subsection{Ex. 13}
Les affirmations suivantes sont-elles vraies ou fausses~? Répondre à la
question en indiquant V ou F .
\begin{enumerate}
\item Lorsqu'on augmente la puissance d'un faisceau laser sans modifier sa
fréquence, l'effet photoélectrique qu'il produit sur une même surface
métallique est tel que~:
\item le nombre de photons émis par seconde augmente
\item l'énergie des photons émis augmente
\item le nombre d'électrons émis par seconde augmente
\item l'intensité du courant électrique détecté augmente
\item l'énergie cinétique des électrons augmente
\end{enumerate}
\subsection{Ex. 14}
Lorsqu'on augmente la fréquence d'un faisceau laser, l'effet
photoélectrique qu'il produit sur une même surface métallique est tel
que~:
\begin{enumerate}
\item le nombre de photons émis par seconde augmente
\item l'énergie des photons émis augmente
\item le nombre d'électrons émis par seconde augmente
\item l'intensité du courant électrique détecté augmente
\item l'énergie cinétique des électrons augmente
\end{enumerate}
(Rép~: A) VFVVF, B) FVFVV)
\subsection{Ex. 15}
\begin{enumerate}
\item Quel est le seuil de longueur d'onde qui permet la photoémission du
zinc~? Le travail d'extraction du zinc est de
6,99.10\textsuperscript{-19} J. (Rép~:284 nm)
\item Cette radiation fait-elle partie du spectre visible de la lumière,
Justifie. (Rép~: Non)
\item Quelle sera alors l'énergie cinétique des électrons émis~? Justifie
(Rép~:1,35.10\textsuperscript{-21} J)
\end{enumerate}
\subsection{Ex. 16}
Un bon niveau d'éclairement pour la lecture correspond à environ
2.10\textsuperscript{13} photons par seconde par centimètre carré. Si
ces photons ont une longueur d'onde moyenne de 500 nm, quelle est
l'intensité lumineuse correspondante~sachant que l'intensité lumineuse
est la puissance reçue par unité de surface.
(Rép~:7,96.10\textsuperscript{-2} W/m\textsuperscript{2})
\subsection{Ex. 17}
Quelle sera la vitesse des électrons émis par du mercure lorsqu'il est
soumis à un rayonnement de longueur d'onde de 200 nm~? Le travail
d'extraction du mercure est de 7,2.10\textsuperscript{-19} J.
(Rép~: 7,8.10\textsuperscript{5} m/s)
\subsection{Ex. 18}
Une station de radio a une puissance émettrice de 400 kW à 100 MHz.
Combien de photons par seconde sont émis~?
\subsection{Ex. 19}
Le travail d'extraction d'un électron est de 3,6.10\textsuperscript{-19}
J pour le potassium. Soit un faisceau de longueur d'onde égale à 400 nm
qui a une puissance de 10\textsuperscript{-9} W. Calcule~:
a) L'énergie cinétique des électrons émis.
b) Le nombre d'électrons émis par mètre carré et par seconde à partir de
la surface où se produit l'effet photoélectrique, en supposant que 3\%
des photons incidents parvient à éjecter des électrons.
\subsection{Ex. 20}
Le seuil photoélectrique de longueur d'onde pour le césium est de 686
nm. Si de la lumière de longueur d'onde égale à 470 nm éclaire la
surface, quelle est la vitesse maximale des électrons émis~?
\subsection{Ex. 21}
Soit un rayonnement de longueur d'onde de 200 nm tombant sur du mercure
pour lequel le travail d'extraction est de 7,2.10\textsuperscript{-19}J.
Quelle est l'énergie cinétique des électrons éjectés~?
\subsection{Ex. 22}
Lorsqu'un métal est éclairé par de la lumière de fréquence f, l'énergie
cinétique maximale des électrons est de 2,08.10\textsuperscript{-19} J.
Lorsqu'on augmente la fréquence de 50\%, l'énergie cinétique maximale
augmente jusqu'à 5,77.10\textsuperscript{-19} J.
Quelle est la fréquence seuil de ce métal~?
\subsection{Ex. 23}
De la lumière bleue (λ = 470 nm) ayant une intensité de 200 W/m² pénètre
dans un œil. Combien de photons entrent dans l'œil par seconde si la
pupille a un diamètre de 5 mm?
\subsection{Ex. 24}
\begin{enumerate}
\item Lors d'une expérience sur l'effet photoélectrique, on a recueilli les
valeurs suivantes pour la longueur d'onde de la lumière incidente et
l'énergie cinétique des électrons émis
\end{enumerate}
\begin{longtable}[]{@{}llllll@{}}
(nm) & 500 & 450 & 400 & 350 & 300\tabularnewline
$E_c$ ($10^{-19}$ J) & 0,59 & 1,04 & 1,60 & 2,19 &
3,20\tabularnewline
\end{longtable}
Utilise ces données pour calculer \emph{graphiquement} la
valeur de la constante de Planck.
\subsection{Ex. 25}
La longueur d'onde du seuil photoélectrique d'un matériau métallique est
de 360 nm. Quelle est la vitesse maximale des électrons émis si on
utilise des photons de 280 nm de longueur d'onde~?
\subsection{Ex. 26}
De la lumière ayant une longueur d'onde de 450 nm et une intensité de 40
W/m² arrive sur un métal. Combien d'électrons sont éjectés par seconde
et par centimètre carré de surface si seulement 3 \% des photons qui
arrivent sur le métal éjecte un électron?
\subsection{Ex. 27}
Lorsqu'un métal est éclairé par de la lumière de fréquence f, l'énergie
cinétique maximale des électrons est de 2,08.10\textsuperscript{-19} J.
Lorsqu'on augmente la fréquence de 50\%, l'énergie cinétique maximale
augmente jusqu'à 5,77.10\textsuperscript{-19} J.
a) Quelle est la fréquence de la source~?
b) Sachant que le spectre visible est situé entre 400 nm et 800 nm, la
lumière utilisée est-elle dans le spectre visible, dans la gamme des
ultraviolets ou dans la gamme des infrarouges~?
\subsection{Ex. 28}
Lorsqu'on éclaire une surface avec de la lumière d'une fréquence égale à
7.10\textsuperscript{14 }Hz, les électrons émis ont une vitesse de
5,2.10\textsuperscript{5} m/s. Quelle est la fréquence seuil du métal?
\subsection{Ex. 29}
De la lumière jaune (λ = 585 nm) ayant une intensité de 50 W/m² arrive
sur un mur ayant une surface de 3 m². Combien de photons arrivent sur le
mur en 20 secondes?
\subsection{Ex. 30}
Les affirmations suivantes sont-elles vraies ou fausses~? Répondre à la
question en indiquant V ou F .
A) Lorsqu'on augmente la puissance d'un faisceau laser sans modifier sa
fréquence, l'effet photoélectrique qu'il produit sur une même surface
métallique est tel que~:
\begin{enumerate}
\item le nombre de photons émis par seconde augmente
\item l'énergie des photons émis augmente
\item le nombre d'électrons émis par seconde augmente
\item l'intensité du courant électrique détecté augmente
\item l'énergie cinétique des électrons augmente
\end{enumerate}
B) Lorsqu'on augmente la fréquence d'un faisceau laser, l'effet
photoélectrique qu'il produit sur une même surface métallique est tel
que~:
\begin{enumerate}
\item le nombre de photons émis par seconde augmente
\item l'énergie des photons émis augmente
\item le nombre d'électrons émis par seconde augmente
\item l'intensité du courant électrique détecté augmente
\item l'énergie cinétique des électrons augmente
\end{enumerate}
\subsection{Ex. 31}
\begin{enumerate}
\item Quel est le seuil de longueur d'onde qui permet la photoémission du
zinc~? Le travail d'extraction du zinc est de
6,99.10\textsuperscript{-19} J.
\item Cette radiation fait-elle partie du spectre visible de la lumière,
Justifie.
\item Quelle sera alors l'énergie cinétique des électrons émis~? Justifie
\end{enumerate}
\subsection{Ex. 32}
Un bon niveau d'éclairement pour la lecture correspond à environ
$2 \quad 10^{13}$ photons par seconde par centimètre carré. Si
ces photons ont une longueur d'onde moyenne de 500 nm, quelle est
l'intensité lumineuse correspondante~sachant que l'intensité lumineuse
est la puissance reçue par unité de surface.
\subsection{Ex. 33}
Quelle sera la vitesse des électrons émis par du mercure lorsqu'il est
soumis à un rayonnement de longueur d'onde de 200 nm~? Le travail
d'extraction du mercure est de 7,2.10\textsuperscript{-19} J.
\subsection{Résolutions}
\includegraphics[width=17.448cm,height=24.063cm]{Pictures/10000001000002570000033B23A9DDE6A8AAA6C6.png}
\includegraphics[width=17.498cm,height=24.13cm]{Pictures/10000001000002570000033B4A6387CB4865E463.png}
\includegraphics[width=17.498cm,height=24.13cm]{Pictures/10000001000002570000033B5842099DBC063D07.png}
\includegraphics[width=17.498cm,height=24.13cm]{Pictures/10000001000002570000033B2EDAF7105EA9C179.png}
\includegraphics[width=17.498cm,height=24.13cm]{Pictures/10000001000002570000033B637F3053717E0CEA.png}
\includegraphics[width=17.498cm,height=24.13cm]{Pictures/10000001000002570000033B1D8D222AA0515BC3.png}
\includegraphics[width=17.498cm,height=24.13cm]{Pictures/10000001000002570000033BD2AA64816C97C97B.png}
\includegraphics[width=17.498cm,height=24.13cm]{Pictures/10000001000002570000033B115B7FCA5E9F77EB.png}
\includegraphics[width=17.498cm,height=24.13cm]{Pictures/10000001000002570000033B834634AAD14CB84E.png}
\includegraphics[width=17.498cm,height=24.13cm]{Pictures/10000001000002570000033BF05D77DDF7E1650A.png}
\includegraphics[width=17.498cm,height=24.13cm]{Pictures/10000001000002570000033B282FC06DC4D6D42C.png}
\includegraphics[width=17.498cm,height=24.13cm]{Pictures/10000001000002570000033B9D23F92FA4FE8FB5.png}
\includegraphics[width=17.498cm,height=24.13cm]{Pictures/10000001000002570000033B70807DBABEAE0DEC.png}
\includegraphics[width=17.498cm,height=24.13cm]{Pictures/10000001000002570000033BB37256DDDEE8E8E4.png}
\includegraphics[width=17.498cm,height=24.13cm]{Pictures/10000001000002570000033BCFBA7D32EF4FFF20.png}
\includegraphics[width=17.498cm,height=24.13cm]{Pictures/10000001000002570000033B7F417BAE8163DC5F.png}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,893 @@
\section{Thermodynamique : calorimétrie et machines thermiques}
%UAA8-Chap 1-2-3-4, pages 162 à 185)
\subsection{Définition}~: La thermodynamique est la partie de la
physique qui étudie les transformations d'énergie impliquant l'énergie
thermique. En particulier, elle étudie comment convertir cette énergie
thermique en énergie mécanique~(moteur à combustion, machine à vapeur,
turbine, \ldots)
\subsection{Conservation de l'énergie et premier principe de la thermodynamique. }
\subsubsection{Mise en situation}}
\begin{itemize}
\item \includegraphics[width=2.829cm,height=2cm]{Pictures/1000000100000392000002617E5250701D3115A8.png}Frottez
vous les mains~: vous transformez de l'énergie mécanique en énergie
thermique.
\item Freinez en descendant une pente à vélo~: les freins s'échauffent.
\item Un engin spatial (la navette) effectue son retour dans l'atmosphère,
il y a échauffement. L'engin doit être protégé pour éviter sa destruction.
\end{itemize}
Nous voyons par ces exemples que de l'énergie mécanique (due au
mouvement) se transforme en énergie thermique.
\begin{figure}
\centering
\includegraphics[width=5.544cm,height=5.777cm]{Pictures/10000001000000E2000000EB4F714951B1E3FFA5.png}
\caption{}
\end{figure}
%\subsection{Rappels de calorimétrie}
% (pages 162 à 167)
\subsubsection{Expérience de Joule}
En 1850, James Prescott Joule réalise une expérience mettant en évidence
de façon quantitative cet échange d'énergie mécanique en énergie
thermique.
Un récipient, isolé et rempli d'eau, contient des roues à palettes.
Comme le montre le schéma, les deux roues sont mises en rotation par la
chute de deux masses égales (il y a donc diminution de l'énergie
potentielle des deux masses). Joule observe une élévation de température
de l'eau (il y a donc augmentation de l'énergie thermique) et observe
expérimentalement ~que~:
\textsubscript{}\includegraphics[width=1.835cm,height=0.989cm]{Pictures/10000001000000E2000000EB005D4F6E603818B5.png}
où cette constante notée c sera appelée la \textbf{chaleur massique}
(ici de l'eau).
\textbf{L'énergie mécanique perdue par le système~(E) est transformée
en énergie thermique qui se mesure par une élévation de température
(). }
Ce rapport c dépend de~:
\begin{itemize}
\item la \emph{\textbf{quantité du liquide}} (ici de l'eau) dans le
récipient.
\item c dépend de la \emph{\textbf{nature du liquide}} (ici de l'eau, mais
cela peut être de huile, de l'essence, \ldots{} )
\end{itemize}
E est la variation d'énergie mécanique qui est égale à la variation
d'énergie thermique. Nous noterons cette variation d'énergie thermique~:
Q
\subsubsection{Equation de la calorimétrie~(rappel)}
\begin{figure}
\centering
\includegraphics[width=1.742cm,height=0.989cm]{Pictures/10000001000000310000001C55B97172EC4D3DC9.png}
\caption{}
\end{figure}
\begin{itemize}
\item Pour l'eau, si vous prenez 1 litre d'eau et que vous voulez augmenter
sa température de 1°C, il faudra lui fournir une énergie thermique de
4 186 J.
\item Si vous comparez les chaleurs massiques de l'eau et de l'huile, vous
voyez que l'huile «~chauffe plus facilement~» que l'eau. Il faudra
fournir moins d'énergie thermique à 1 litre d'huile pour élever sa
température de 1°C qu'à 1 litre d'eau pour élever sa température de
1°C puisque la chaleur massique de l'huile est inférieure à celle de
l'eau.
\item Page 163 du livre , vous trouverez les chaleurs massiques de
différentes substances.
TODO TABLEAU A AJOUTER ICI
\end{itemize}
\subsection{Premier principe de la thermodynamique~: principe de conservation d'énergie. }
Définition~: Un \textbf{système isolé }est un système qui n'échange ni
matière, ni chaleur, ni travail avec l'extérieur.
En conséquence, si une partie du système isolé perd de l'énergie, une
autre partie du système en gagne une quantité identique.
\emph{Illustrations~: }
\begin{itemize}
\item Lorsqu'une voiture freine, elle perd de l'énergie cinétique. Il doit y
avoir une augmentation d'énergie dans le système. C'est de l'énergie
thermique par échauffement des freins.
\item Dans l'expérience de Joule, les masses perdent de l'énergie
potentielle gravifique. Il doit y avoir une augmentation d'énergie
dans le système. C'est de l'énergie thermique traduite par
l'augmentation de température de l'eau.
\end{itemize}
\subsection{EXERCICE RESOLU A REALISER~: page 164-165 du livre.}
\begin{enumerate}
\item
\emph{Rendement d'une transformation énergétique }
\end{enumerate}
\includegraphics[width=3.108cm,height=2.073cm]{Pictures/10000001000000500000003510F712318EAE4AA8.png}\includegraphics[width=5.95cm,height=2.896cm]{Pictures/100000010000046C00000226BB542474620E0092.png}
\includegraphics[width=5.184cm,height=4.166cm]{Pictures/10000001000001D9000002050D0008DD07AA637E.png}\emph{\textbf{A3-Echange
d'énergie lors d'un changement d'état. }}
En
\href{https://fr.wikipedia.org/wiki/Thermodynamique}{\emph{\emph{thermodynamique}}},
un \textbf{changement d'état} est le passage d'un
\href{https://fr.wikipedia.org/wiki/\%C3\%89tat_de_la_mati\%C3\%A8re}{\emph{\emph{état}}}
de la
\href{https://fr.wikipedia.org/wiki/Mati\%C3\%A8re}{\emph{\emph{matière}}}
à un autre état. Les trois principaux états de la matière sont~:
\href{https://fr.wikipedia.org/wiki/\%C3\%89tat_solide}{\emph{\emph{solide}}},
\href{https://fr.wikipedia.org/wiki/Liquide}{\emph{\emph{liquide}}} et
\href{https://fr.wikipedia.org/wiki/Gaz}{\emph{\emph{gazeux}}}.
Lors des changements d'état, un corps doit prendre ou céder de la
chaleur pour atteindre un autre état.
L'énergie échangée sous forme de chaleur lors d'un changement d'état
résulte de la modification (rupture ou établissement) de liaisons
intermoléculaires.
Lorsqu'il y a passage d'une substance \textbf{d'un état à l'autre}, il y
a toujours échange d'énergie \emph{\textbf{alors que la température
reste constante pendant toute la durée du changement. }}
A titre d'exemple~:
\begin{itemize}
\tightlist
\item
La fusion~: lorsque la glace devient liquide, on dira que la glace
fond, il faut donc \emph{apporter de la chaleur} pour que la glace
change d'état.
\item
\includegraphics[width=3.491cm,height=2.191cm]{Pictures/10000001000002170000015016F56C8D283134A7.png}La
liquéfaction : C'est le passage de l'état gazeux à l'état liquide. Ce
changement d'état s'obtient en cédant de la chaleur. La vapeur devant
liquide en \emph{cédant de la chaleur.}
\item
La vaporisation~: de l'eau qui bout dans une casserole ne verra pas sa
température augmenter avant que toute la quantité d'eau ne soit
vaporisée. Il faut \emph{apporter de la chaleur} pour que l'eau change
d'état.
\end{itemize}
\begin{figure}
\centering
\includegraphics[width=1.177cm,height=0.989cm]{Pictures/10000001000000210000001C2230AC93944A1880.png}
\caption{}
\end{figure}
Exemple~: La chaleur latente\textbf{ de vaporisation} est la quantité de
chaleur qu'il faut \emph{fournir} à 1~kg de liquide (à pression et
température constantes) pour obtenir 1~kg de vapeur.
\emph{\textbf{EXERCICE RESOLU A REALISER page 167. }}
\emph{\textbf{En résumé }}
Le graphique ci-dessous représente la variation de température d'un
corps en fonction du temps.
\begin{figure}
\centering
\includegraphics[width=11.084cm,height=11.345cm]{Pictures/100000010000024300000307D0F0277ED39C03FA.png}
\caption{}
\end{figure}
\emph{\textbf{Exemple: Calculer la quantité de chaleur pour transformer
10 g de glace à - 40 °C en 10 g de vapeur d'eau à 120 °C.}}\\
La quantité de chaleur nécessaire pour transformer une masse d'eau
solide à une température \textsubscript{1} en une masse d'eau gazeuse à
une température \textsubscript{2} résulte des cinq transformations
suivantes:\\
• Chauffage de la glace de - 40~ à 0 °C:
\textbf{Q}\textsubscript{\textbf{1}}\textbf{ =
M.C}\textsubscript{\textbf{s}}\textbf{.(0-(-40)) =
M.C}\textsubscript{\textbf{s}}\textbf{.40}\\
• Transformation de la glace en eau liquide à 0 °C:
\textbf{Q}\textsubscript{\textbf{2}}\textbf{ =
M.L}\textsubscript{\textbf{F}}\\
• Chauffage de l'eau liquide de 0~ à 100 °C: Q\textsubscript{3} =
\textbf{M.C}\textsubscript{\textbf{L}}\textbf{.(100-0)=M.C}\textsubscript{\textbf{L}}\textbf{.100}\\
• Transformation de l'eau liquide en vapeur d'eau à 100 °C:
\textbf{Q}\textsubscript{\textbf{4}}\textbf{ =
M.L}\textsubscript{\textbf{V}}\\
• Chauffage de la vapeur d'eau de~ 100 à 120 °C: Q\textsubscript{5} =
\textbf{M.C}\textsubscript{\textbf{G}}\textbf{.(120-100)=M.C}\textsubscript{\textbf{G}}\textbf{.20}\\
~\\
La quantité de chaleur totale est:
Q =~ Q\textsubscript{1} + Q\textsubscript{2}~ +~ Q\textsubscript{3 }+~~~
Q\textsubscript{4}~ +~ Q\textsubscript{5}
Q = M.C\textsubscript{S}(\textsubscript{F} - \textsubscript{1}) +
M.L\textsubscript{F} + M.C\textsubscript{L}(\textsubscript{E} -
\textsubscript{F}) + M.L\textsubscript{V} +
M.C\textsubscript{G}(\textsubscript{2} -  \textsubscript{E})
Q = 0,010. (2,09.10\textsuperscript{3}.40 + 334.10\textsuperscript{3} +
4,18.10\textsuperscript{3}.100 + 2~255.10\textsuperscript{3} +
1,88.10\textsuperscript{3}.20) = \textbf{31 282 J}\\
~\\
Ce calcul peut se généraliser à n'importe quelle substance en faisant
agir les températures de changement d'état.
\includegraphics[width=17.851cm,height=23.895cm]{Pictures/10000001000001EA000002916122DCB2747A02B4.png}ANNEXE~:
Chaleurs massiques et latentes de quelques matériaux.
Voir exercice (résolus) en fin de dossier.
\emph{\textbf{B~-- Transformation d'énergie thermique et machines
thermiques}}
Les machines thermiques~sont des machines qui transforment l'énergie
thermique en énergie mécanique \textbf{(moteur à essence, centrale
électrique thermique, machine frigorifique, pompe à chaleur,
turboréacteurs des avions). }
Les premières machines thermiques furent les machines à vapeur ( James
Watt -- 1770) qui contribuèrent à la révolution industrielle . Vinrent
ensuite le moteur à essence (Otto -- 1876) et le moteur diesel (Diesel -
1893).
\emph{\textbf{B.1 -- MACHINES THERMIQUES}}
\emph{\textbf{a) Fonctionnement simplifié d'une machine thermique. }}
\begin{figure}
\centering
\includegraphics[width=16.558cm,height=10.349cm]{Pictures/10000001000001DE0000012B86B99364138CE2C8.png}
\caption{}
\end{figure}
Le ballon rempli de gaz relié hermétiquement à la seringue est appelé
\textbf{le système.}
Ce dispositif servait à remonter le charbon dans les mines.
\emph{1}\textsuperscript{\emph{er}}\emph{ temps~(fig.a):}
\begin{itemize}
\tightlist
\item
Une source chaude chauffe le système. (source chaude~: Q1)
\item
Le gaz se dilate et l'augmentation de pression fait monter le piston.
Il y a donc transformation d'énergie thermique en travail (W).
\end{itemize}
\emph{2}\textsuperscript{\emph{è}}\emph{ temps(fig.b)~: }
\begin{itemize}
\tightlist
\item
Le système est refroidi (source froide~: Q2). En effet, pour que la
machine puisse monter d'autres objets, il faut faire redescendre le
piston. Le système doit revenir à son état initial.
\end{itemize}
Le cycle de montée--descente peut recommencer. Nous avons donc un
mouvement de va-et-vient~: un cycle.
Pour qu'une machine thermique puisse fonctionner, il faut disposer de
deux sources~: une source chaude et une source froide.
Bilan des échanges d'énergie~: Q1 = W + Q2
\includegraphics[width=8.348cm,height=4.422cm]{Pictures/10000001000000CA0000006B3AF24511F34B3207.png}\emph{\textbf{b)
Bilan des échanges d'énergie. }}
\begin{itemize}
\tightlist
\item
Q1~: énergie thermique que le système reçoit (source chaude).
\item
W~: travail effectué par le système.
\item
Q2~: énergie thermique perdue par le système (source froide).
\end{itemize}
Si nous admettons qu'à la fin de son cycle, le système est revenu à son
état initial~:
\textbf{L'énergie thermique reçue par le système est égale à l'énergie
cédée sous forme d'énergie mécanique et thermique~: }
\textbf{Q1 = W + Q2  W = Q1 -- Q2}
\emph{\textbf{c) Rendement d'une machine thermique }}
\emph{\textbf{Il apparaît donc qu'une machine thermique ne peut
convertir la totalité de l'énergie thermique Q1 qui lui est fournie en
énergie mécanique W. Il y a nécessairement une partie de l'énergie
thermique qui part vers la source froide (sans quoi, il n'y a pas de
cycle). }}
Or, c'est bien l'énergie mécanique qui est recherchée par l'utilisateur.
\emph{Rendement  d'une machine thermique~: }
\emph{Remarques~: }
\begin{itemize}
\tightlist
\item
Si T2 est proche de T1, le rendement tend vers 0. Pour augmenter le
rendement d'une machine thermique, il faut une grande différence de
température entre la source chaude et la source froide.
\item
\includegraphics[width=3.293cm,height=4.538cm]{Pictures/10000001000000C90000011558FC2D6C1A163765.png}Si
T1  T2, le rapport T2/T1 tend vers zéro et le rendement vers 100\%.
Pour augmenter le rendement d'une machine thermique, il faut une
grande différence de température entre la source chaude et la source
froide.
\end{itemize}
\emph{Rappel}~: conversion de degré Celsius en degré Kelvin~:
\emph{\textbf{B.2 -- MOTEURS}}
\begin{enumerate}
\def\labelenumi{\alph{enumi})}
\tightlist
\item
\emph{\textbf{Le moteur à essence (pages 170-171). }}
\end{enumerate}
Le moteur à essence est une machine thermique puisqu'il transforme une
énergie thermique en énergie mécanique.
La source chaude résulte de la combustion du mélange air - essence.
La source froide est l'atmosphère. Le rendement d'un moteur est donc
plus performant par temps froid.
Dans la grande majorité des cas, un moteur possède 4 cylindres.
Chaque cylindre est relié au vilebrequin
(\href{https://fr.wikipedia.org/wiki/Cat\%C3\%A9gorie:Dispositif_m\%C3\%A9canique}{\emph{\emph{dispositif
mécanique}}} qui permet la transformation du mouvement linéaire
rectiligne du piston en un
\href{https://fr.wikipedia.org/wiki/Mouvement_de_rotation}{\emph{\emph{mouvement
de rotation}}} continu.
Le moteur thermique d'une voiture fonctionne en quatre étapes. On dit
donc qu'il s'agit d'un moteur à quatre temps.
Dans le moteur sont creusés des cylindres et à l'intérieur de chaque
cylindre se trouve un piston.
\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\tightlist
\item
\textbf{Admission~}: les pistons descendent, aspirant du carburant et
de l'air.
\item
\textbf{Compression - explosion~}: en remontant, tout ce mélange est
comprimé dans les cylindres.
\item
\textbf{Détente}~: arrivé en haut, il se produit une combustion de ce
mélange grâce à une étincelle. Cette explosion renvoie alors les
pistons vers le bas.
\item
\textbf{Echappement}~: les pistons remonteront à nouveau pour pousser
les gaz d'échappement vers l'extérieur du moteur. Le cycle
recommencera alors de zéro.
\end{enumerate}
Ce mouvement de va et vient fait tourner un axe qui sort du moteur pour
aller jusqu'aux roues. Voici donc comment le moteur thermique d'une
voiture permet son fonctionnement.
\begin{figure}
\centering
\includegraphics[width=15.946cm,height=6.844cm]{Pictures/10000001000001ED000000D356E01F68F1130F39.png}
\caption{}
\end{figure}
\begin{enumerate}
\def\labelenumi{\alph{enumi})}
\tightlist
\item
\emph{\textbf{La centrale thermique classique}}
\end{enumerate}
\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
\includegraphics[width=17.851cm,height=10.278cm]{Pictures/10000001000002220000013A629B591569517346.png}\textbf{Une
combustion a lieu dans la chaudière} et chauffe de l'eau qui se
transforme en vapeur.
\end{enumerate}
Ces centrales brûlent des énergies fossiles (charbon, fioul, gaz et donc
émission de CO\textsubscript{2} dans l'atmosphère) ( transformation
d'énergie chimique en énergie thermique).
\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
\textbf{La vapeur surchauffée fait tourner une turbine} (conversion
d'énergie thermique en énergie mécanique). Cette turbine actionnera un
alternateur pour transformer l'énergie mécanique en énergie
électrique.
\item
\textbf{La vapeur est ensuite refroidie par de l'eau froide} dans le
condenseur.
\item
\textbf{L'eau de condensation est renvoyée dans la chaudière. }L'eau
froide qui a servi à la condensation ressort tiède, (elle emporte Q2).
Afin de ne pas rejeter une eau tiède dans l'environnement, elle est
refroidie dans de gigantesques tours de refroidissement.
\end{enumerate}
\emph{Rappel~: Fonctionnement de l'alternateur. }
Un aimant est mobile à proximité d'une bobine de fil de cuivre induit un
courant électrique dans la bobine et on peut l'utiliser pour alimenter
un circuit électrique.
\includegraphics[width=6.424cm,height=5.339cm]{Pictures/10000001000001380000010305BEE511D6A017FC.png}Dans
le cas d'une centrale thermique, c'est le mouvement de rotation de l'axe
de la turbine qui génère le mouvement de l'aimant dans la bobine de
l'alternateur.
Il y a production d'énergie électrique qui est envoyée sur le réseau.
\begin{enumerate}
\def\labelenumi{\alph{enumi})}
\tightlist
\item
\emph{\textbf{Machines frigorifiques et pompe à chaleur.}}
\end{enumerate}
Les machines frigorifiques refroidissent l'intérieur d'une enceinte en
réchauffant le milieu dans lequel elles se trouvent et les pompes à
chaleur font l'inverse.
Elles utilisent un fluide frigorigène (ou réfrigérant). C'est un
\href{https://fr.wikipedia.org/wiki/Fluide_(mati\%C3\%A8re)}{\emph{\emph{fluide}}}
qui permet la mise en œuvre d'un
\href{https://fr.wikipedia.org/wiki/Cycle_frigorifique}{\emph{\emph{cycle
thermique}}}. Ce fluide absorbe la chaleur à basse température et basse
pression, puis libère la chaleur à une température et une pression plus
élevées, généralement par un changement d'état. Les fluides frigorigènes
sont utilisés dans les systèmes de
\href{https://fr.wikipedia.org/wiki/R\%C3\%A9frig\%C3\%A9ration}{\emph{\emph{production
de froid}}} (climatisation, congélateur, réfrigérateur,~etc.), comme
dans les systèmes de production de chaud par
\href{https://fr.wikipedia.org/wiki/Pompe_\%C3\%A0_chaleur}{\emph{\emph{pompes
à chaleur}}}.
\emph{Rappel~: }
\begin{itemize}
\tightlist
\item
La \textbf{vaporisation(ou évaporation)}, qui est le changement d'état
d'un fluide \textbf{de l'état liquide à l'état gazeux}, est un
phénomène \textbf{endothermique}. Le fluide prend de la chaleur à son
environnement pour réaliser ce changement d'état. (Il faut chauffer de
l'eau pour la vaporiser).
\end{itemize}
\begin{itemize}
\tightlist
\item
La \textbf{liquéfaction},~qui est le changement d'état d'un fluide de
\textbf{l'état gazeux à l'état liquide}, est un phénomène
\textbf{exothermique}. Le fluide cède de la chaleur dans son
environnement en réalisant ce changement d'état. (Il faut refroidir de
la vapeur d'eau pour la liquéfier).
\end{itemize}
\emph{\textbf{Ces deux changements d'état, l'un exothermique, l'autre
exothermique, sont la base du principe de fonctionnement des machines
frigorifiques et pompes à chaleur. }}
\textbf{}
\textbf{}
\textbf{}
\textbf{}
\textbf{}
\textbf{}
\textbf{}
\textbf{}
\textbf{}
\textbf{}
\textbf{}
\textbf{}
\textbf{\emph{\textbf{c.1) Le réfrigérateur }}}
\textbf{}
\textbf{\emph{\textbf{Principe de fonctionnement du réfrigérateur}}}
\textbf{\textbf{Principe de base~: on refroidit l'intérieur de
l'appareil et on réchauffe la pièce où se trouve le réfrigérateur. }}
\textbf{\textbf{Pour réaliser ces transferts de chaleur, on utilise un
intermédiaire, un fluide que l'on fait passer alternativement de l'état
gazeux à l'état liquide et inversement. On s'arrange pour que ce fluide
réalise un circuit et s'évapore (et donc refroidisse l'environnement) à
l'intérieur du réfrigérateur tout en se liquéfiant à l'extérieur (et
donc échauffe l'environnement). }}
\textbf{}
\includegraphics[width=14.263cm,height=8.848cm]{Pictures/10000001000001D50000012367CA7DC2A31818DF.png}\textbf{}
\textbf{\textbf{}}
\textbf{}
\textbf{}
\textbf{}
\textbf{}
\textbf{}
\textbf{}
\textbf{}
\textbf{}
\textbf{}
\textbf{\textbf{}}
\textbf{}
\textbf{}
\textbf{}
\textbf{}
\textbf{}
\textbf{}
\textbf{}
\textbf{}
\textbf{}
\textbf{\emph{\textbf{1 -- Compresseur.}}}
\begin{quote}
\textbf{\textbf{Pour faire circuler le fluide de l'intérieur vers
l'extérieur du réfrigérateur, on utilise un compresseur qui aspire
d'abord le gaz, le comprime et le refoule à l'extérieur. Le gaz se
transforme en vapeur à haute pression et haute température. }}
\end{quote}
\begin{quote}
\textbf{\textbf{Le compresseur fonctionne comme une pompe et fournit un
travail (W).}}
\end{quote}
\textbf{\textbf{}\emph{\textbf{2- Condenseur.}}}
\begin{quote}
\textbf{\textbf{Cette vapeur et dirigée vers le condenseur (un long
serpentin en contact avec l'air ambiant plus froid (à l'extérieur du
réfrigérateur). La vapeur va donc se condenser sur les parois du
serpentin tout en cédant de la chaleur à l'air extérieur. A la sortie du
condenseur, le fluide est devenu liquide et s'est un peu refroidi. .
C'est le premier changement d'état.}}
\end{quote}
\textbf{\textbf{}\emph{\textbf{3 -- Détendeur.}}}
\begin{quote}
\textbf{\textbf{Le fluide passe ensuite dans le détendeur~: dispositif
qui diminue brutalement la pression du fluide avec pour conséquence une
baisse importante de la température en dessous de celle que l'on veut
maintenir à l'intérieur du réfrigérateur. }}
\end{quote}
\begin{quote}
\textbf{\textbf{Rappel~: diminuer la pression d'un gaz diminue sa
température.}}
\end{quote}
\textbf{\emph{\textbf{4 - Evaporation.}}}
\begin{quote}
\textbf{\textbf{Ce liquide entre dans le réfrigérateur et arrive dans
l'évaporateur qui, comme le condenseur, est un long serpentin qui met le
fluide en contact avec l'air à l'intérieur du frigo. Cet air est plus
chaud que le fluide et donc ce fluide recevant de la chaleur (les
aliments dans le frigo sont plus chauds que le fluide), va se
transformer en gaz (il se vaporise) en extrayant la chaleur de l'air
ambiant (provenant de la chaleur des aliments). L'intérieur du
réfrigérateur se refroidit.}}
\end{quote}
\textbf{}
\textbf{\textbf{Et le cycle recommence. }}
\textbf{}
\emph{\textbf{Bilan énergétique du réfrigérateur et rendement}}
\begin{figure}
\centering
\includegraphics[width=12.771cm,height=7.902cm]{Pictures/100000010000025300000171E55891644F01868A.png}
\caption{}
\end{figure}
En vertu du principe de conservation\textbf{ }d'énergie,\textbf{ }le
système étant le fluide qui circule, les énergies reçues par le système
sont égales à l'énergie cédée.
L'énergie utile est Q1 et l'énergie investie W. On peut donc exprimer
\emph{\textbf{le rendement}} sous la forme~:
\emph{\textbf{c.2. La pompe à chaleur}}
La pompe à chaleur est utilisée comme procédé d'énergie de chauffage.
La pompe à chaleur fonctionne de la même façon qu'un réfrigérateur.
Un fluide très volatil circule dans un circuit fermé. Dans ce cas, le
condenseur est dans la maison et l'évaporateur à l'extérieur.
La partie à l'extérieur est en contact avec le sol, de l'eau ou de
l'air.
\begin{figure}
\centering
\includegraphics[width=6.008cm,height=3.739cm]{Pictures/10000001000000E30000008754ECBE984DD7350E.png}
\caption{}
\end{figure}
\emph{\textbf{Bilan énergétique de la pompe à chaleur et rendement}}
En vertu du principe de conservation\textbf{ }d'énergie,\textbf{ }le
système étant le fluide qui circule, les énergies reçues par le système
sont égale à l'énergie cédée (comme pour le réfrigérateur).
Puisque l'énergie thermique extérieure (Q1) est illimitée et que l'on
paie moins d'énergie (W) que l'on en reçoit (Q2), le rendement est
supérieur à 1. Il est généralement appelé «~COP~», coefficient de
performance.
Une pompe à chaleur de COP égal à 4 utilise 1 kwh électrique (W) pour 4
kwh thermique (Q2). Ce qui signifie que trois quarts de l'énergie de
chauffage (Q1) provient d'une source gratuite et renouvelable.
NB~: 1 kwh = 1000w.3600s = 3,6.10\textsuperscript{6} ws =
3,6.10\textsuperscript{6} J
Le COP est d'autant plus grand que la température extérieure est faible.
C'est pourquoi on utilise de préférence le sol extérieur en
hiver~(température constante de 8°C à 1 mètre de profondeur).
La pompe à chaleur est donc très intéressante d'un point de vue
énergétique. Son inconvénient est le coût relativement élevé de
l'installation par rapport au chauffage classique par combustion
d'énergies fossiles (chaudières).
\begin{figure}
\centering
\includegraphics[width=17.898cm,height=8.819cm]{Pictures/10000001000001E1000000ED8743610641ABBB0F.png}
\caption{}
\end{figure}
\emph{\textbf{Exercices de calorimétrie}}
\emph{\textbf{Exercice 1}}
Quelle est la quantité d'énergie calorifique nécessaire pour faire
fondre 300 g de glace, sachant que la chaleur latente de la glace est de
334~ kJ/kg.°C? (rép. 100,2 kJ)
\emph{\textbf{Exercice 2}}
Quelle quantité de chaleur faut-il fournir à une masse de 1 kg d'huile
pour élever sa température de 10° C~sachant que la chaleur massique de
l'huile est de 1960 J/kg.°C?
(rép. 19,6 kJ)
\emph{\textbf{Exercice 3}}
Quelle quantité de chaleur faut-il fournir à une masse de 1 kg d'eau
liquide pour élever sa température de 10° C~sachant que la chaleur
massique de l'eau liquide est de 4186 J/kg.°C?
(rép.41,9 kJ)
\emph{\textbf{Exercice 4}}
On fournit 20 kJ à 200 g d'eau liquide qui a une température de 20°C.
Quelle sera la température finale~? (rép. 43,9°C)
\emph{\textbf{Exercice 5}}
Quelle est la quantité d'énergie calorifique nécessaire pour vaporiser
600 g d'éthanol~sachant que la chaleur latente de l'éthanol est de 850
kJ/kg~? (rép. 510 kJ)
\emph{\textbf{Exercice 6}}
Quelle est la quantité d'énergie calorifique nécessaire pour transformer
complètement 500 g de glace à -10°C en vapeur à 100°C~? (rép. 1514,25
kJ).
\includegraphics[width=18.486cm,height=25.73cm]{Pictures/100000010000024E00000334339B3944B6446F24.png}
\includegraphics[width=18.486cm,height=25.73cm]{Pictures/100000010000024E000003341A59B4106578A675.png}
\emph{\textbf{Machines thermiques -- Exercices}}
\emph{\textbf{Exercice 1}}
Une machine thermique simple fonctionne avec deux sources de chaleur,
une source chaude (Q1) et une source froide (Q2).
Si les températures respectives sont~: t1=70°C et t2=15°C, calculer le
rendement théorique de cette machine.
\emph{\textbf{Exercice 2 (N°3 page 184)}}
Evaluer approximativement l'élévation de température d'une balle de
fusil qui pénètre et s'arrête dans un paquet de sable si~:
\begin{itemize}
\tightlist
\item
la vitesse initiale de la balle est de 600 m/s,
\item
la masse de la balle est de 20 g,
\item
la chaleur massique du métal (fer, acier) est de 450 J/kg.°C,
\item
la température initiale est proche de 15°C.
\end{itemize}
\emph{\textbf{Exercice 3}}
Un réchaud électrique possède une puissance de 1000 W. Il sert à
chauffer un volume V=1L d'eau de 14°C à l'ébullition. Sachant que 60\%
de la chaleur dégagée par le réchaud est emmagasinée par l'eau, calculer
la durée du chauffage.
\emph{\textbf{Exercice 4}}
Combien de temps fait-il à un réchaud d'une puissance de 500 W pour
faire passer 400 g d'eau de 15°C à 98°C~?
\emph{\textbf{Exercice 5}}
Un camion de 25 tonnes roule à 90 km/h, lorsqu'il doit freiner
brusquement jusqu'à l'arrêt. On suppose que 80\% de l'énergie cinétique
est convertie en énergie thermique des freins.
Quelle doit être la masse des disques de freins en fer
(c\textsubscript{fer}=450 J/kg.°C) si l'échauffement ne doit pas
dépasser =400C~?
\emph{\textbf{Exercice 6 (N°7 page 184)}}
Pendant le week-end du premier mai, un voisin a remis en route le
chauffage de sa piscine en utilisant sa nouvelle pompe à chaleur
récupérant ainsi l'énergie de l'air extérieur à 25°C.
Comparer le gain énergétique de son installation par rapport à un autre
moyen de chauffage de la piscine, par exemple un système de résistance
chauffantes, si~:
-Le rendement de l'installation électrique est de 95\%.
-Le coefficient de performance de la pompe à chaleur est de 4.
-Le volume d'eau à chauffer est de 72m\textsuperscript{3}.
-La température espérée pour l'eau de la piscine est de 30°.
\emph{\textbf{Exercice 7}}
\textbf{Chauffage de l'eau du bassin d'une piscine avec une pompe à
chaleur.}
Après remplissage d'une piscine d'un volume de 560 m\textsuperscript{3}
avec une eau initialement prise à l'extérieur à une température de 17°C,
on souhaite augmenter la température de l'eau jusqu'à 28°C. On
considérera que le transfert thermique depuis la pompe à chaleur sert
intégralement à chauffer l'eau sans déperdition.
\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
Calculer la valeur Q2, énergie transférée par le fluide de la pompe à
chaleur à l'eau de la piscine quand la température a atteint 28°C.
\end{enumerate}
\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
On a mesuré l'énergie thermique We consommée pendant ce transfert et
trouvé une valeur égale à~: We=8.10\textsuperscript{9} J. déterminer
la valeur de Q1, l'énergie transférée par l'air extérieur.
\end{enumerate}
\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
Exprimer, puis calculer le coefficient de performance de la pompe à
chaleur.
\end{enumerate}
\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
Montrer qu'avec une pompe à chaleur de coefficient de performance égal
à 3, on réalise 67\% d'économie sur la facture en énergie électrique
par rapport à un chauffage direct utilisant, par exemple, une
résistance électrique.
\end{enumerate}
\includegraphics[width=19.239cm,height=26.741cm]{Pictures/10000001000002530000033C4DAAA30BE8CDB504.png}
\includegraphics[width=19.239cm,height=26.741cm]{Pictures/10000001000002530000033C5B177CADC8B81C22.png}
\includegraphics[width=19.239cm,height=26.975cm]{Pictures/100000010000025300000343E75324A8017B0310.png}
\includegraphics[width=19.239cm,height=26.975cm]{Pictures/100000010000025300000343E2BD3741EC0DE6A2.png}
\includegraphics[width=19.239cm,height=26.975cm]{Pictures/100000010000025300000343FDF0776EAA696B9B.png}
\includegraphics[width=18.251cm,height=25.591cm]{Pictures/1000000100000253000003439D3D805CCD33A9FD.png}
\emph{\textbf{SYNTHESE DE THERMODYNAMIQUE}}
\begin{figure}
\centering
\includegraphics[width=18.486cm,height=24.576cm]{Pictures/1000000100000244000003044E80AD546388D528.png}
\caption{}
\end{figure}
\begin{figure}
\centering
\includegraphics[width=19.143cm,height=27.376cm]{Pictures/10000001000002440000033EFBA46FA2D90A9FB6.png}
\caption{}
\end{figure}

View File

@ -0,0 +1,11 @@
\section{Diffraction de la lumière par un réseau}
\includegraphics[width=18.508cm,height=26.033cm]{Pictures/100000010000025F000003435F03932190A92825.png}
\includegraphics[width=18.503cm,height=25.456cm]{Pictures/100000010000025F00000343A168F15A1FB3D46F.png}
\includegraphics[width=18.503cm,height=25.456cm]{Pictures/100000010000025F00000343388E3E491CC3B041.png}
\includegraphics[width=18.503cm,height=25.456cm]{Pictures/100000010000025F0000034333FCC8788E7659FD.png}
\includegraphics[width=18.503cm,height=25.456cm]{Pictures/100000010000025F00000343D486BB66DF721C0E.png}

View File

@ -6,6 +6,7 @@
%\usepackage[a4paper, total={17cm, 26cm}]{geometry}
\usepackage[a4paper,lmargin=1.5cm,rmargin=1.5cm]{geometry}
\usepackage{color}
\usepackage{calc}
\usepackage{bookmark}
\usepackage{siunitx}
\usepackage{hyperref} % Pour liens internets cliquables
@ -42,6 +43,9 @@
% pour les pieds de page et entêtes
\usepackage{fancyhdr}
%\addtolength{\topmargin}{-2pt}
\setlength{\headheight}{13.59999pt}
\addtolength{\topmargin}{-1.59999pt}
\pagestyle{fancy}
\fancyhf{}
@ -75,30 +79,8 @@
En cours de rédaction et correction - ne pas distribuer \\
tout commentaire bienvenu par email à \\
manueldephysique@educode.be}
%\author{Alexandra David - Corinne Leyssen - Nicolas Pettiaux - Matteo Poncé}
\author{James Dann - Corinne Leyssen - Nicolas Pettiaux}
%\includeonly{
%COURS_00-exercices-test.tex
%COURS_01-Energie-travail-puissance-rendement
%COURS_02-Energie-OHEXERCRESOL.tex,
%COURS_02-Energie_OH.tex
%COURS_03-Longueur_d_onde_et_ondes_progressives.tex,
%COURS_04_-Intensité_sonore.tex,
%COURS_05_-Réflex-Réfract+exerc_résolus.tex
%COURS_06-Diffraction_+_exercices(résolus).tex
%COURS_07-Interférences+exerc(résolus).tex
%COURS_08-Effet_Doppler.tex
%COURS_09-Expérience_de_Young.tex
%COURS_10-Diffraction_lumière_par_réseau.tex
%COURS_11-Réfraction_de_la_lumière.tex
%COURS_12-Indice_de_réfraction_lumière.tex
%COURS_13_-Ondes_électromagnétiques.tex
%COURS_14_-Effet_photoélectrique_et_lumière.tex
%COURS_15_-Energie_nucléaire.tex
%COURS_16__-thermodynamique.tex
%COURS__-Diffraction_de_la_lumière_par_un_réseau+_exerc_résolus.tex
%}
%\author{James Dann - Corinne Leyssen - Nicolas Pettiaux}
\author{James Dann - Nicolas Pettiaux}
\begin{document}
@ -111,24 +93,27 @@ tout commentaire bienvenu par email à \\
\hrulefill
\section*{Introduction}
Ces notes sont en bonne partie basées sur les notes de Corinne Leyssen. Qu'elle soit ici remerciée.
%\include{COURS_00-exercices-test.tex}
\include{COURS_01-Energie-travail-puissance-rendement}
\include{COURS_02-Energie-OH.tex}
\include{COURS_03-Longueur_d_onde_et_ondes_progressives.tex}
\include{COURS_04_-Intensité_sonore.tex}
\include{COURS_05_-Réflex-Réfract+exerc_résolus.tex}
\include{COURS_06-Diffraction_+_exercices(résolus).tex}
\include{COURS_07-Interférences+exerc(résolus).tex}
\include{COURS_08-Effet_Doppler.tex}
\include{COURS_09-Expérience_de_Young.tex}
\include{COURS_10-Diffraction_lumière_par_réseau.tex}
\include{COURS_11-Réfraction_de_la_lumière.tex}
\include{COURS_12-Indice_de_réfraction_lumière.tex}
\include{COURS_13_-Ondes_électromagnétiques.tex}
\include{COURS_14_-Effet_photoélectrique_et_lumière.tex}
include{COURS_15_-Energie_nucléaire.tex}
\include{COURS_16__-thermodynamique.tex}
\include{COURS__-Diffraction_de_la_lumière_par_un_réseau+_exerc_résolus.tex}
\include{COURS_04-Intensité_sonore.tex}
\include{COURS_05-Réflex-Réfract+exerc_résolus.tex}
%\include{COURS_06-Diffraction_+_exercices_résolus.tex}
%\include{COURS_07-Interférences+exercices_résolus.tex}
%\include{COURS_08-Effet_Doppler.tex}
%\include{COURS_09-Expérience_de_Young.tex}
%\include{COURS_10-Diffraction_lumière_par_réseau.tex}
%\include{COURS_11-Réfraction_de_la_lumière.tex}
%\include{COURS_12-Indice_de_réfraction_lumière.tex}
%\include{COURS_13-Ondes_électromagnétiques.tex}
%\include{COURS_14-Effet_photoélectrique_et_lumière.tex}
%\include{COURS_15-Energie_nucléaire.tex}
%\include{COURS_16-thermodynamique.tex}
%\include{COURS_17-Diffraction_de_la_lumière_par_un_réseau+_exerc_résolus.tex}
\end{document}