blender_io_export_psx_mesh/primdrawGT.c

410 lines
14 KiB
C
Raw Normal View History

/* primdrawG.c, by Schnappy, 12-2020
2020-12-30 11:23:36 +01:00
- Draw a gouraud shaded, UV textured mesh exported by the blender <= 2.79b plugin io_export_psx_tmesh.py
2021-01-04 18:28:27 +01:00
* added depth cueing use with fog farcolor
* switched to double buffer
* switched to vsync callback for pad input
based on primdraw.c by Lameguy64 (http://www.psxdev.net/forum/viewtopic.php?f=64&t=537)
2014 Meido-Tek Productions.
Demonstrates:
- Using a primitive OT to draw triangles without libgs.
- Using the GTE to rotate, translate, and project 3D primitives.
Controls:
Start - Toggle interactive/non-interactive mode.
Select - Reset object's position and angles.
L1/L2 - Move object closer/farther.
L2/R2 - Rotate object (XY).
Up/Down/Left/Right - Rotate object (XZ/YZ).
Triangle/Cross/Square/Circle - Move object up/down/left/right.
*/
/* PSX screen coordinate system
*
* Z+
* /
* /
* +------X+
* /|
* / |
* / Y+
* eye */
#include <sys/types.h>
#include <libgte.h>
#include <libgpu.h>
#include <libetc.h>
#include <stdio.h>
2021-01-04 18:28:27 +01:00
// Precalculated sin/cos values
#include "psin.c"
#include "pcos.c"
2021-01-05 13:28:16 +01:00
// Sample model
2020-12-30 22:09:12 +01:00
#include "coridor.c"
2021-01-05 13:28:16 +01:00
#define VMODE 0 // 0: NTSC, 1: PAL
#define SCREENXRES 320
#define SCREENYRES 240
#define CENTERX SCREENXRES/2
#define CENTERY SCREENYRES/2
2021-01-05 13:28:16 +01:00
#define OTLEN 2048 // Maximum number of OT entries
2020-12-30 11:23:36 +01:00
#define PRIMBUFFLEN 1024 * sizeof(POLY_GT3) // Maximum number of POLY_GT3 primitives
2020-12-29 16:39:21 +01:00
// Display and draw environments, double buffered
DISPENV disp[2];
DRAWENV draw[2];
2021-01-04 18:28:27 +01:00
u_long ot[2][OTLEN] = {0}; // Ordering table (contains addresses to primitives)
2021-01-05 13:28:16 +01:00
char primbuff[2][PRIMBUFFLEN] = {0}; // Primitive list // That's our prim buffer
2020-12-29 16:39:21 +01:00
2021-01-05 13:28:16 +01:00
char * nextpri = primbuff[0]; // Primitive counter
2020-12-29 16:39:21 +01:00
2020-12-30 11:23:36 +01:00
char db = 0; // Current buffer counter
2020-12-29 16:39:21 +01:00
2020-12-30 11:23:36 +01:00
short vs;
2021-01-04 18:28:27 +01:00
int PadStatus;
typedef struct{
2021-01-05 13:28:16 +01:00
int x, xv; // x: current value += vx : new value
2021-01-04 18:28:27 +01:00
int y, yv;
int z, zv;
2021-01-05 13:28:16 +01:00
int pan, panv; // horizontal rotation
int tilt, tiltv; // vertical rotation
int rol; // lateral rotation
2021-01-05 13:28:16 +01:00
VECTOR pos; // camera current pos vector
SVECTOR rot; // camera current rot vector
2021-01-04 18:28:27 +01:00
MATRIX mat;
} CAMERA;
CAMERA camera = {0};
// Prototypes
2020-12-29 16:39:21 +01:00
void init(void);
void display(void);
2021-01-04 18:28:27 +01:00
void applyCamera(CAMERA * cam);
void applyOrbCam(MESH * mesh);
void LoadTexture(u_long * tim, TIM_IMAGE * tparam);
2021-01-04 18:28:27 +01:00
void callback(void);
int main() {
int i;
2021-01-05 13:28:16 +01:00
long t, p, OTz, Flag; // t == vertex count, p == depth cueing interpolation value, OTz == value to create Z-ordered OT, Flag == see LibOver47.pdf, p.143
2021-01-05 13:28:16 +01:00
POLY_GT3 * poly; // pointer to a POLY_GT3
2020-12-29 16:39:21 +01:00
2021-01-05 13:28:16 +01:00
MATRIX PolyMatrix = {0}; // global transformation matrix
2021-01-05 13:28:16 +01:00
CVECTOR outCol, outCol1, outCol2 = {0,0,0,0}; // Holds vertices colors with depth cueing applied
init();
2021-01-04 18:28:27 +01:00
2021-01-05 13:28:16 +01:00
VSyncCallback(callback); // pad is read on vsync callback
2021-01-04 18:28:27 +01:00
2021-01-05 13:28:16 +01:00
SetFarColor(20, 20, 40); // vertices colors are mixed with farcolor depending on p value
SetFogNearFar(1200, 3000,SCREENXRES); // fog distance thresholds
2020-12-30 11:23:36 +01:00
for (int k = 0; k < sizeof(meshes)/sizeof(TMESH *); k++){
2021-01-05 13:28:16 +01:00
LoadTexture(meshes[k]->tim_data, meshes[k]->tim);
2020-12-30 11:23:36 +01:00
}
2021-01-05 13:28:16 +01:00
// Set Camera starting pos and rot
2021-01-04 18:28:27 +01:00
camera.xv = -ONE * -89;
camera.yv = -ONE * 59;
camera.zv = -ONE * 133;
camera.tiltv = 232 ;
camera.panv = -336;
applyCamera(&camera);
// Main loop
while (1) {
2021-01-04 18:28:27 +01:00
// Local Transform
2021-01-05 13:28:16 +01:00
meshes[2]->rot->vy -= 28; // rotate small cube
meshes[1]->rot->vy += 28; // rotate blue monolith thingy
2021-01-04 18:28:27 +01:00
//World Translations
2021-01-05 13:28:16 +01:00
meshes[1]->pos->vz = meshes[1]->pos->vz + (pcos[VSync(-1)%1024]/768 ); // move blue monolith thingy
meshes[1]->pos->vx = meshes[1]->pos->vx + (psin[VSync(-1)%1024]/768 );
2021-01-04 18:28:27 +01:00
// Camera setup
camera.pos.vx = -(camera.x/ONE);
camera.pos.vy = -(camera.y/ONE);
camera.pos.vz = -(camera.z/ONE);
camera.rot.vx = camera.tilt;
camera.rot.vy = -camera.pan;
applyCamera(&camera);
// Clear the current OT
2020-12-29 16:39:21 +01:00
ClearOTagR(ot[db], OTLEN);
2021-01-04 18:28:27 +01:00
for (int k = 0; k < sizeof(meshes)/sizeof(meshes[0]); k++){
2020-12-29 16:39:21 +01:00
2020-12-30 11:23:36 +01:00
// Render the sample vector model
t=0;
2020-12-29 16:39:21 +01:00
2020-12-30 11:23:36 +01:00
// modelCube is a TMESH, len member == # vertices, but here it's # of triangle... So, for each tri * 3 vertices ...
2021-01-04 18:28:27 +01:00
for (i = 0; i < (meshes[k]->tmesh->len * 3); i += 3) {
2020-12-30 11:23:36 +01:00
poly = (POLY_GT3 *)nextpri;
2021-01-05 13:28:16 +01:00
RotMatrix(meshes[k]->rot, meshes[k]->mat); // Apply mesh rotation to matrix
2021-01-04 18:28:27 +01:00
2021-01-05 13:28:16 +01:00
TransMatrix(meshes[k]->mat, meshes[k]->pos); // Apply mesh translation to matrix
CompMatrixLV(&camera.mat, meshes[k]->mat, &PolyMatrix); // Make a composite matrix from cam matrix + meshes matrices
2021-01-04 18:28:27 +01:00
2021-01-05 13:28:16 +01:00
SetRotMatrix(&PolyMatrix); // Set rotation matrix
SetTransMatrix(&PolyMatrix); // Set Transmatrix matrix
2021-01-04 18:28:27 +01:00
2021-01-05 13:28:16 +01:00
// Draw meshes
2021-01-04 18:28:27 +01:00
2020-12-30 11:23:36 +01:00
SetPolyGT3(poly);
2021-01-04 18:28:27 +01:00
DpqColor3(&meshes[k]->tmesh->c[i],&meshes[k]->tmesh->c[i+1],&meshes[k]->tmesh->c[i+2], *meshes[k]->p,
&outCol,&outCol1,&outCol2
);
setRGB0(poly, outCol.r, outCol.g , outCol.b);
setRGB1(poly, outCol1.r, outCol1.g, outCol1.b);
setRGB2(poly, outCol2.r, outCol2.g, outCol2.b);
2021-01-05 13:28:16 +01:00
// WIP : Trying to use the draw area as a texture to create pseudo refraction effect
2021-01-04 18:28:27 +01:00
if (*meshes[k]->isPrism){
((POLY_GT3 *)poly)->tpage = getTPage(meshes[k]->tim->mode&0x3, 0,
2021-01-05 13:28:16 +01:00
0,
320
2021-01-04 18:28:27 +01:00
);
setUV3(poly, 32, 32,
32, 220,
220,220);
} else {
((POLY_GT3 *)poly)->tpage = getTPage(meshes[k]->tim->mode&0x3, 0,
meshes[k]->tim->prect->x,
meshes[k]->tim->prect->y
);
}
setUV3(poly, meshes[k]->tmesh->u[i].vx , meshes[k]->tmesh->u[i].vy + meshes[k]->tim->prect->y,
meshes[k]->tmesh->u[i+1].vx, meshes[k]->tmesh->u[i+1].vy + meshes[k]->tim->prect->y,
meshes[k]->tmesh->u[i+2].vx, meshes[k]->tmesh->u[i+2].vy + meshes[k]->tim->prect->y);
//~ }
2021-01-05 13:28:16 +01:00
2020-12-30 11:23:36 +01:00
// Rotate, translate, and project the vectors and output the results into a primitive
2021-01-04 18:28:27 +01:00
OTz = RotTransPers(&meshes[k]->tmesh->v[meshes[k]->index[t]] , (long*)&poly->x0, meshes[k]->p, &Flag);
OTz += RotTransPers(&meshes[k]->tmesh->v[meshes[k]->index[t+1]], (long*)&poly->x1, meshes[k]->p, &Flag);
OTz += RotTransPers(&meshes[k]->tmesh->v[meshes[k]->index[t+2]], (long*)&poly->x2, meshes[k]->p, &Flag);
2020-12-30 11:23:36 +01:00
// Using RotTransPers3 is a bit faster (-31ms/frame), but you loose precision for Z-ordering
//~ OTz = RotTransPers3(
//~ &meshes[k]->tmesh->v[meshes[k]->index[t]],
//~ &meshes[k]->tmesh->v[meshes[k]->index[t+1]],
//~ &meshes[k]->tmesh->v[meshes[k]->index[t+2]],
//~ (long*)&poly->x0, (long*)&poly->x1, (long*)&poly->x2,
2021-01-05 13:28:16 +01:00
//~ meshes[k]->p,
2020-12-30 11:23:36 +01:00
//~ &Flag
//~ );
// Sort the primitive into the OT
OTz /= 3;
2021-01-04 18:28:27 +01:00
if ((OTz > 0) && (OTz < OTLEN) && (*meshes[k]->p < 3588)){
2020-12-30 11:23:36 +01:00
AddPrim(&ot[db][OTz-2], poly);
2021-01-04 18:28:27 +01:00
}
2020-12-30 11:23:36 +01:00
nextpri += sizeof(POLY_GT3);
t+=3;
}
}
2021-01-05 13:28:16 +01:00
2020-12-29 16:39:21 +01:00
//~ FntPrint("BASED ON PRIMDRAW BY LAMEGUY64, 2014 \n");
2021-01-04 18:28:27 +01:00
FntPrint("#Tris :%d \n", sizeof(ot[db])/sizeof(POLY_GT3));
FntPrint("Vsync :%d \n", VSync(0));
FntPrint("#Meshes %d\n", sizeof(meshes)/sizeof(TMESH *));
FntPrint("Cam pos : %d, %d, %d\n", camera.pos.vx, camera.pos.vy, camera.pos.vz);
FntPrint("Cam or : %d, %d", camera.tilt, camera.pan);
FntPrint("\np:%d", *meshes[0]->p);
FntPrint("\n%d %d", meshes[1]->pos->vx, meshes[1]->pos->vz);
FntPrint("\n%d %d", *meshes[0]->isPrism, *meshes[1]->isPrism);
2020-12-29 16:39:21 +01:00
FntFlush(-1);
2020-12-29 16:39:21 +01:00
display();
}
return 0;
}
2021-01-04 18:28:27 +01:00
void init(){
// Reset the GPU before doing anything and the controller
PadInit(0);
ResetGraph(0);
// Initialize and setup the GTE
InitGeom();
SetGeomOffset(CENTERX, CENTERY); // x, y offset
SetGeomScreen(CENTERX); // Distance between eye and screen
// Set the display and draw environments
SetDefDispEnv(&disp[0], 0, 0 , SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 0, 0, 0);
setRGB0(&draw[1], 0, 0, 0);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
// Init font system
FntLoad(960, 0);
FntOpen(16, 16, 196, 96, 0, 512);
}
void display(void){
DrawSync(0);
vs = VSync(-1);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
DrawOTag(ot[db] + OTLEN - 1);
db = !db;
nextpri = primbuff[db];
}
void applyCamera(CAMERA * cam){
VECTOR vec; // Vector that holds the output values of the following instructions
RotMatrix(&cam->rot, &cam->mat); // Convert rotation angle in psx units (360° == 4096) to rotation matrix)
ApplyMatrixLV(&cam->mat, &cam->pos, &vec); // Multiply matrix by vector pos and output to vec
TransMatrix(&cam->mat, &vec); // Apply transform vector
SetRotMatrix(&cam->mat); // Set Rotation matrix
SetTransMatrix(&cam->mat); // Set Transform matrix
}
void LoadTexture(u_long * tim, TIM_IMAGE * tparam){ // This part is from Lameguy64's tutorial series : lameguy64.net/svn/pstutorials/chapter1/3-textures.html login/pw: annoyingmous
OpenTIM(tim); // Open the tim binary data, feed it the address of the data in memory
ReadTIM(tparam); // This read the header of the TIM data and sets the corresponding members of the TIM_IMAGE structure
LoadImage(tparam->prect, tparam->paddr); // Transfer the data from memory to VRAM at position prect.x, prect.y
DrawSync(0); // Wait for the drawing to end
if (tparam->mode & 0x8){ // check 4th bit // If 4th bit == 1, TIM has a CLUT
LoadImage(tparam->crect, tparam->caddr); // Load it to VRAM at position crect.x, crect.y
DrawSync(0); // Wait for drawing to end
}
}
void callback(void){
PadStatus = PadRead(0);
// Camera panning
if (PadStatus & PADLup) camera.tiltv += 8;
if (PadStatus & PADLdown) camera.tiltv -= 8;
if (PadStatus & PADLleft) camera.panv -= 12;
if (PadStatus & PADLright) camera.panv += 12;
// Camera movement
if (PadStatus & PADRup) {
camera.zv += (ccos(camera.pan) * ccos(camera.tilt)) / 1024; // pan = horizontal motion, tilt = vertical. cos(pan) returns value in rang -ONE,ONE on the horiz. axis. -4096-0 = left, 0-4096 = right
camera.xv += (csin(camera.pan) * ccos(camera.tilt)) / 1024;
camera.yv += (csin(camera.tilt) * ccos(camera.tilt)) / 1024;
}
if (PadStatus & PADRdown) {
camera.zv -= (ccos(camera.pan) * ccos(camera.tilt)) / 1024; // pan = horizontal motion, tilt = vertical. cos(pan) returns value in rang -ONE,ONE on the horiz. axis. -4096-0 = left, 0-4096 = right
camera.xv -= (csin(camera.pan) * ccos(camera.tilt)) / 1024;
camera.yv -= (csin(camera.tilt) * ccos(camera.tilt)) / 1024;
}
if (PadStatus & PADRleft) {
camera.zv += (csin(camera.pan)*2);
camera.xv -= (ccos(camera.pan)*2);
}
if (PadStatus & PADRright) {
camera.zv -= (csin(camera.pan)*2);
camera.xv += (ccos(camera.pan)*2);
}
if (PadStatus & PADR1) camera.yv -= ONE*1;
if (PadStatus & PADR2) camera.yv += ONE*1;
// Reset
if (PadStatus & PADselect) {
camera.x = camera.y = camera.z = 0;
camera.pan = camera.tilt = camera.rol = 0;
camera.panv = camera.tiltv = 0;
camera.xv = 0;
camera.yv = 0;
camera.zv = -150;
}
camera.x += camera.xv;
camera.y += camera.yv;
camera.z += camera.zv;
camera.pan += camera.panv;
camera.tilt += camera.tiltv;
camera.xv = 0;
camera.yv = 0;
camera.zv = 0;
camera.panv = 0;
camera.tiltv = 0;
}