export whole scenes

This commit is contained in:
ABelliqueux 2021-01-04 18:28:27 +01:00
parent 47d60bcd14
commit d62f5536ad
2 changed files with 404 additions and 229 deletions

View File

@ -22,6 +22,7 @@ class ExportMyFormat(bpy.types.Operator, ExportHelper):
def execute(self, context):
import bmesh
from math import degrees
def triangulate_object(obj): # Stolen from here : https://blender.stackexchange.com/questions/45698/triangulate-mesh-in-python/45722#45722
me = obj.data
@ -41,15 +42,20 @@ class ExportMyFormat(bpy.types.Operator, ExportHelper):
if bpy.data.objects[m].type == 'MESH':
triangulate_object(bpy.data.objects[m])
scale = 120
scale = 200
f = open(os.path.normpath(self.filepath),"w+")
# write typedef struct
f.write("typedef struct { \n"+
"\tTMESH * tmesh;\n" +
"\tint * index;\n" +
"\tTIM_IMAGE * tim; \n" +
"\tu_long * tim_data;\n"
"\tTMESH * tmesh;\n" +
"\tint * index;\n" +
"\tTIM_IMAGE * tim; \n" +
"\tu_long * tim_data;\n"+
"\tMATRIX * mat;\n" +
"\tVECTOR * pos;\n" +
"\tSVECTOR * rot;\n" +
"\tshort * isPrism;\n" +
"\tlong * p;\n" +
"\t} MESH;\n\n")
for m in bpy.data.meshes:
@ -86,22 +92,24 @@ class ExportMyFormat(bpy.types.Operator, ExportHelper):
# get image size x, y
# print(bpy.data.meshes[0].uv_textures[0].data[0].image.size[0]) # x
# print(bpy.data.meshes[0].uv_textures[0].data[0].image.size[1]) # y
if m.uv_textures[0].data[0].image != None:
f.write("SVECTOR "+"model"+m.name+"_uv[] = {\n")
texture_image = m.uv_textures[0].data[0].image
tex_width = texture_image.size[0]
tex_height = texture_image.size[1]
uv_layer = m.uv_layers[0].data
for i in range(len(uv_layer)):
u = uv_layer[i].uv
ux = u.x * tex_width
uy = u.y * tex_height
f.write("\t"+str(ux)+","+str(tex_height - uy)+", 0, 0")
if i != len(uv_layer) - 1:
f.write(",")
f.write("\n")
f.write("};\n\n")
if len(m.uv_textures) != 0:
for t in range(len(m.uv_textures)):
if m.uv_textures[t].data[0].image != None:
f.write("SVECTOR "+"model"+m.name+"_uv[] = {\n")
texture_image = m.uv_textures[t].data[0].image
tex_width = texture_image.size[0]
tex_height = texture_image.size[1]
uv_layer = m.uv_layers[0].data
for i in range(len(uv_layer)):
u = uv_layer[i].uv
ux = u.x * tex_width
uy = u.y * tex_height
f.write("\t"+str(ux)+","+str(tex_height - uy)+", 0, 0")
if i != len(uv_layer) - 1:
f.write(",")
f.write("\n")
f.write("};\n\n")
# Write vertex colors vectors
f.write("CVECTOR "+"model"+m.name+"_color[] = {\n")
@ -135,13 +143,23 @@ class ExportMyFormat(bpy.types.Operator, ExportHelper):
f.write("\n")
f.write("};\n\n")
#write object matrix, rot and pos vectors
f.write("MATRIX model"+m.name+"_matrix = {0};\n" +
"VECTOR model"+m.name+"_pos = {"+ str(bpy.data.objects[m.name].location.x * 100) + "," + str(bpy.data.objects[m.name].location.y * 100) + "," + str(bpy.data.objects[m.name].location.z * 100) + ", 0};\n" +
"SVECTOR model"+m.name+"_rot = {"+ str(degrees(bpy.data.objects[m.name].rotation_euler.x)/360 * 4096) + "," + str(degrees(bpy.data.objects[m.name].rotation_euler.y)/360 * 4096) + "," + str(degrees(bpy.data.objects[m.name].rotation_euler.z)/360 * 4096) + "};\n" +
"short model"+m.name+"_isPrism = 0;\n" +
"long model"+m.name+"_p = 0;\n" +
"\n")
# Write TMESH struct
f.write("TMESH "+"model"+m.name+" = {\n")
f.write("\t"+"model"+m.name+"_mesh, \n")
f.write("\t"+"model"+m.name+"_normal,\n")
if m.uv_textures[0].data[0].image != None:
f.write("\t"+"model"+m.name+"_uv,\n")
if len(m.uv_textures) != 0:
for t in range(len(m.uv_textures)):
if m.uv_textures[0].data[0].image != None:
f.write("\t"+"model"+m.name+"_uv,\n")
else:
f.write("\t0,\n")
@ -154,25 +172,35 @@ class ExportMyFormat(bpy.types.Operator, ExportHelper):
# write texture binary name and declare TIM_IMAGE
# by default, load the file from the TIM folder
# ~ if len(m.uv_textures) != 0:
if m.uv_textures[0].data[0].image != None:
tex_name = texture_image.name
prefix = str.partition(tex_name, ".")[0].replace('-','_')
f.write("extern unsigned long "+"_binary_TIM_" + prefix + "_tim_start[];\n")
f.write("extern unsigned long "+"_binary_TIM_" + prefix + "_tim_end[];\n")
f.write("extern unsigned long "+"_binary_TIM_" + prefix + "_tim_length;\n\n")
f.write("TIM_IMAGE tim_" + prefix + ";\n\n")
if len(m.uv_textures) != 0:
for t in range(len(m.uv_textures)):
if m.uv_textures[0].data[0].image != None:
tex_name = texture_image.name
prefix = str.partition(tex_name, ".")[0].replace('-','_')
f.write("extern unsigned long "+"_binary_TIM_" + prefix + "_tim_start[];\n")
f.write("extern unsigned long "+"_binary_TIM_" + prefix + "_tim_end[];\n")
f.write("extern unsigned long "+"_binary_TIM_" + prefix + "_tim_length;\n\n")
f.write("TIM_IMAGE tim_" + prefix + ";\n\n")
f.write("MESH mesh"+m.name+" = {\n")
f.write("\t&model"+ m.name +",\n")
f.write("\tmodel" + m.name + "_index,\n")
if m.uv_textures[0].data[0].image != None:
f.write("\t&tim_"+ prefix + ",\n")
f.write("\t_binary_TIM_" + prefix + "_tim_start\n")
if len(m.uv_textures) != 0:
for t in range(len(m.uv_textures)):
if m.uv_textures[0].data[0].image != None:
f.write("\t&tim_"+ prefix + ",\n")
f.write("\t_binary_TIM_" + prefix + "_tim_start,\n")
else:
f.write("0,\n" +
"0,\n")
f.write("\t0,\n" +
"\t0,\n")
f.write("\t&model"+m.name+"_matrix,\n" +
"\t&model"+m.name+"_pos,\n" +
"\t&model"+m.name+"_rot,\n" +
"\t&model"+m.name+"_isPrism,\n" +
"\t&model"+m.name+"_p\n")
f.write("};\n\n")
f.write("MESH * meshes[" + str(len(bpy.data.meshes)) + "] = {\n")

View File

@ -2,6 +2,10 @@
- Draw a gouraud shaded, UV textured mesh exported by the blender <= 2.79b plugin io_export_psx_tmesh.py
* added depth cueing use with fog farcolor
* switched to double buffer
* switched to vsync callback for pad input
based on primdraw.c by Lameguy64 (http://www.psxdev.net/forum/viewtopic.php?f=64&t=537)
2014 Meido-Tek Productions.
@ -35,6 +39,10 @@
#include <libetc.h>
#include <stdio.h>
// Precalculated sin/cos values
#include "psin.c"
#include "pcos.c"
// Sample vector model
#include "coridor.c"
@ -54,7 +62,7 @@
DISPENV disp[2];
DRAWENV draw[2];
u_long ot[2][OTLEN]; // Ordering table (contains addresses to primitives)
u_long ot[2][OTLEN] = {0}; // Ordering table (contains addresses to primitives)
char primbuff[2][PRIMBUFFLEN] = {0}; // Primitive list // That's our prim buffer
//~ int primcnt=0; // Primitive counter
@ -64,20 +72,248 @@ char * nextpri = primbuff[0]; // Primitive counter
char db = 0; // Current buffer counter
short vs;
//~ RECT ClearRect ={0,0,320,240};
//~ extern unsigned long _binary_TIM_bousai_tim_start[];
//~ extern unsigned long _binary_TIM_bousai_tim_end[];
//~ extern unsigned long _binary_TIM_bousai_tim_length;
int PadStatus;
//~ int TPressed=0;
//~ int AutoRotate=0;
//~ TIM_IMAGE bousai;
//~ SVECTOR Rotate={0}; // Rotation coordinates
//~ VECTOR Trans={ 0, 0, CENTERX, 0 }; // Translation coordinates
//~ MATRIX Matrix={0}; // Matrix data for the GTE
//~ // Scaling coordinates
//~ VECTOR Scale={ ONE, ONE, ONE, 0 }; // ONE == 4096
//~ static int frame = 0;
typedef struct{
int x, xv; // x: current value += vx : new value
int y, yv;
int z, zv;
int pan, panv;
int tilt, tiltv;
int rol;
VECTOR pos;
SVECTOR rot;
SVECTOR dvs;
MATRIX mat;
} CAMERA;
CAMERA camera = {0};
// Prototypes
void init(void);
void display(void);
void applyCamera(CAMERA * cam);
void applyOrbCam(MESH * mesh);
void LoadTexture(u_long * tim, TIM_IMAGE * tparam);
void callback(void);
int main() {
int i;
long t, p, OTz, Flag; // t == vertex count, p == depth cueing interpolation value, OTz == value to create Z-ordered OT, Flag == see LibOver47.pdf, p.143
POLY_GT3 * poly; // pointer to a POLY_G4
SVECTOR RotVector = {0, 0, 0}; // Initialize rotation vector {x, y, z}
VECTOR MovVector = {0, 50, 50, 0};
MATRIX PolyMatrix = {0};
CVECTOR outCol ={0,0,0,0};
CVECTOR outCol1 ={0,0,0,0};
CVECTOR outCol2 ={0,0,0,0};
// Texture window
//~ DR_MODE * dr_mode; // Pointer to dr_mode prim
//~ RECT tws = {0, 0, 32, 32}; // Texture window coordinates : x, y, w, h
init();
VSyncCallback(callback);
//~ SetBackColor(255 , 255, 255);
SetFarColor(20, 20, 40);
SetFogNearFar(1200, 3000,SCREENXRES);
for (int k = 0; k < sizeof(meshes)/sizeof(TMESH *); k++){
LoadTexture(meshes[k]->tim_data, meshes[k]->tim);
}
// Set Camera starting pos
camera.xv = -ONE * -89;
camera.yv = -ONE * 59;
camera.zv = -ONE * 133;
camera.tiltv = 232 ;
camera.panv = -336;
applyCamera(&camera);
// Main loop
while (1) {
// Local Transform
meshes[2]->rot->vy -= 28;
meshes[1]->rot->vy += 28;
//~ meshes[1]->rot->vz += 8;
//~ meshes[1]->rot->vx += 2;
//World Translations
meshes[1]->pos->vz = meshes[1]->pos->vz + (pcos[VSync(-1)%1024]/768 );
meshes[1]->pos->vx = meshes[1]->pos->vx + (psin[VSync(-1)%1024]/768 );
//~ meshes[1]->pos->vz = pcos[VSync(-1)%4096] / 4096;
//~ meshes[1]->pos->vx = psin[VSync(-1)%4096] / 4096;
//~ meshes[1]->pos->vx = 0;
//~ meshes[1]->pos->vz = 100;
//~ meshes[1]->rot->vy ++;
//~ if (!(VSync(-1)%2)){
//~ meshes[1]->pos->vy = pcos[VSync(-1)%ONE] * psin[VSync(-1)%ONE] / ONE / 128;
//~ }
// Camera setup
camera.pos.vx = -(camera.x/ONE);
camera.pos.vy = -(camera.y/ONE);
camera.pos.vz = -(camera.z/ONE);
camera.rot.vx = camera.tilt;
camera.rot.vy = -camera.pan;
applyCamera(&camera);
// Clear the current OT
ClearOTagR(ot[db], OTLEN);
for (int k = 0; k < sizeof(meshes)/sizeof(meshes[0]); k++){
// Render the sample vector model
t=0;
// modelCube is a TMESH, len member == # vertices, but here it's # of triangle... So, for each tri * 3 vertices ...
for (i = 0; i < (meshes[k]->tmesh->len * 3); i += 3) {
poly = (POLY_GT3 *)nextpri;
// Initialize the primitive and set its color values
RotMatrix(meshes[k]->rot, meshes[k]->mat); // Apply rotation matrix
TransMatrix(meshes[k]->mat, meshes[k]->pos); // Apply translation matrix
CompMatrixLV(&camera.mat, meshes[k]->mat, &PolyMatrix);
SetRotMatrix(&PolyMatrix); // Set default rotation matrix
SetTransMatrix(&PolyMatrix);
//~ applyOrbCam(meshes[1]);
SetPolyGT3(poly);
DpqColor3(&meshes[k]->tmesh->c[i],&meshes[k]->tmesh->c[i+1],&meshes[k]->tmesh->c[i+2], *meshes[k]->p,
&outCol,&outCol1,&outCol2
);
setRGB0(poly, outCol.r, outCol.g , outCol.b);
setRGB1(poly, outCol1.r, outCol1.g, outCol1.b);
setRGB2(poly, outCol2.r, outCol2.g, outCol2.b);
// The TIMs are loaded in vram vertically on the same TPAGE; eg. Tim1 640,0, Tim1 640, 128
// We then add tim_image.prect.y to the y coord of the uvs to use the correct texture.
if (*meshes[k]->isPrism){
((POLY_GT3 *)poly)->tpage = getTPage(meshes[k]->tim->mode&0x3, 0,
0,
256
);
setUV3(poly, 32, 32,
32, 220,
220,220);
} else {
((POLY_GT3 *)poly)->tpage = getTPage(meshes[k]->tim->mode&0x3, 0,
meshes[k]->tim->prect->x,
meshes[k]->tim->prect->y
);
}
setUV3(poly, meshes[k]->tmesh->u[i].vx , meshes[k]->tmesh->u[i].vy + meshes[k]->tim->prect->y,
meshes[k]->tmesh->u[i+1].vx, meshes[k]->tmesh->u[i+1].vy + meshes[k]->tim->prect->y,
meshes[k]->tmesh->u[i+2].vx, meshes[k]->tmesh->u[i+2].vy + meshes[k]->tim->prect->y);
//~ }
// Rotate, translate, and project the vectors and output the results into a primitive
OTz = RotTransPers(&meshes[k]->tmesh->v[meshes[k]->index[t]] , (long*)&poly->x0, meshes[k]->p, &Flag);
OTz += RotTransPers(&meshes[k]->tmesh->v[meshes[k]->index[t+1]], (long*)&poly->x1, meshes[k]->p, &Flag);
OTz += RotTransPers(&meshes[k]->tmesh->v[meshes[k]->index[t+2]], (long*)&poly->x2, meshes[k]->p, &Flag);
// Using RotTransPers3 is a bit faster (-31ms/frame), but you loose precision for Z-ordering
//~ OTz = RotTransPers3(
//~ &meshes[k]->tmesh->v[meshes[k]->index[t]],
//~ &meshes[k]->tmesh->v[meshes[k]->index[t+1]],
//~ &meshes[k]->tmesh->v[meshes[k]->index[t+2]],
//~ (long*)&poly->x0, (long*)&poly->x1, (long*)&poly->x2,
//~ &p,
//~ &Flag
//~ );
// Sort the primitive into the OT
OTz /= 3;
if ((OTz > 0) && (OTz < OTLEN) && (*meshes[k]->p < 3588)){
AddPrim(&ot[db][OTz-2], poly);
}
nextpri += sizeof(POLY_GT3);
t+=3;
}
}
// Can we use texture window with UV mapping ?
//~ dr_mode = (DR_MODE *)nextpri;
//~ setDrawMode(dr_mode,1,0, getTPage(tim_cube.mode&0x3, 0,
//~ tim_cube.prect->x,
//~ tim_cube.prect->y), &tws); //set texture window
//~ AddPrim(&ot[db], dr_mode);
//~ nextpri += sizeof(DR_MODE);
// Render the banner (FntPrint is always on top because it is not part of the OT)
//~ FntPrint("BASED ON PRIMDRAW BY LAMEGUY64, 2014 \n");
FntPrint("#Tris :%d \n", sizeof(ot[db])/sizeof(POLY_GT3));
FntPrint("Vsync :%d \n", VSync(0));
FntPrint("#Meshes %d\n", sizeof(meshes)/sizeof(TMESH *));
FntPrint("Cam pos : %d, %d, %d\n", camera.pos.vx, camera.pos.vy, camera.pos.vz);
FntPrint("Cam or : %d, %d", camera.tilt, camera.pan);
FntPrint("\np:%d", *meshes[0]->p);
FntPrint("\n%d %d", meshes[1]->pos->vx, meshes[1]->pos->vz);
FntPrint("\n%d %d", *meshes[0]->isPrism, *meshes[1]->isPrism);
FntFlush(-1);
display();
//~ frame = VSync(-1);
}
return 0;
}
void init(){
// Reset the GPU before doing anything and the controller
@ -87,7 +323,7 @@ void init(){
// Initialize and setup the GTE
InitGeom();
SetGeomOffset(CENTERX, CENTERY); // x, y offset
SetGeomScreen(CENTERX*2); // Distance between eye and screen
SetGeomScreen(CENTERX); // Distance between eye and screen
// Set the display and draw environments
SetDefDispEnv(&disp[0], 0, 0 , SCREENXRES, SCREENYRES);
@ -103,8 +339,8 @@ void init(){
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 80, 80, 255);
setRGB0(&draw[1], 80, 80, 255);
setRGB0(&draw[0], 0, 0, 0);
setRGB0(&draw[1], 0, 0, 0);
draw[0].isbg = 1;
draw[1].isbg = 1;
@ -114,14 +350,14 @@ void init(){
// Init font system
FntLoad(960, 0);
FntOpen(16, 16, 196, 64, 0, 256);
FntOpen(16, 16, 196, 96, 0, 512);
}
void display(void){
DrawSync(0);
vs = VSync(0);
vs = VSync(-1);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
@ -137,6 +373,40 @@ void display(void){
}
void applyCamera(CAMERA * cam){
VECTOR vec; // Vector that holds the output values of the following instructions
RotMatrix(&cam->rot, &cam->mat); // Convert rotation angle in psx units (360° == 4096) to rotation matrix)
ApplyMatrixLV(&cam->mat, &cam->pos, &vec); // Multiply matrix by vector pos and output to vec
TransMatrix(&cam->mat, &vec); // Apply transform vector
SetRotMatrix(&cam->mat); // Set Rotation matrix
SetTransMatrix(&cam->mat); // Set Transform matrix
}
void applyOrbCam(MESH * mesh){
MATRIX mat;
RotMatrix(mesh->rot, mesh->mat); // Apply rotation matrix
TransMatrix(mesh->mat, mesh->pos); // Apply translation matrix
CompMatrixLV(&camera.mat, mesh->mat, &mat);
SetRotMatrix(&mat); // Set default rotation matrix
SetTransMatrix(&mat); // Set Transform matrix
//~ RotMatrix(meshes[k]->rot, meshes[k]->mat); // Apply rotation matrix
//~ TransMatrix(meshes[k]->mat, meshes[k]->pos); // Apply translation matrix
//~ CompMatrixLV(&camera.mat, meshes[k]->mat, &PolyMatrix);
//~ SetRotMatrix(&PolyMatrix); // Set default rotation matrix
//~ SetTransMatrix(&PolyMatrix);
}
void LoadTexture(u_long * tim, TIM_IMAGE * tparam){ // This part is from Lameguy64's tutorial series : lameguy64.net/svn/pstutorials/chapter1/3-textures.html login/pw: annoyingmous
OpenTIM(tim); // Open the tim binary data, feed it the address of the data in memory
ReadTIM(tparam); // This read the header of the TIM data and sets the corresponding members of the TIM_IMAGE structure
@ -151,186 +421,63 @@ void LoadTexture(u_long * tim, TIM_IMAGE * tparam){ // This part is from Lam
}
int main() {
int i;
int PadStatus;
int TPressed=0;
int AutoRotate=1;
void callback(void){
PadStatus = PadRead(0);
long t, p, OTz, Flag; // t == vertex count, p == depth cueing interpolation value, OTz == value to create Z-ordered OT, Flag == see LibOver47.pdf, p.143
// Camera panning
if (PadStatus & PADLup) camera.tiltv += 8;
if (PadStatus & PADLdown) camera.tiltv -= 8;
if (PadStatus & PADLleft) camera.panv -= 12;
if (PadStatus & PADLright) camera.panv += 12;
POLY_GT3 *poly = {0}; // pointer to a POLY_G4
SVECTOR Rotate={ 0 }; // Rotation coordinates
VECTOR Trans={ 0, 0, CENTERX*2, 0 }; // Translation coordinates
// Scaling coordinates
VECTOR Scale={ ONE, ONE, ONE, 0 }; // ONE == 4096
MATRIX Matrix={0}; // Matrix data for the GTE
// Texture window
DR_MODE * dr_mode; // Pointer to dr_mode prim
RECT tws = {0, 0, 32, 32}; // Texture window coordinates : x, y, w, h
init();
for (int k = 0; k < sizeof(meshes)/sizeof(TMESH *); k++){
LoadTexture(meshes[k]->tim_data, meshes[k]->tim);
}
// Main loop
while (1) {
//~ while ((VSync(-1) - frame) < 1){
// Read pad status
PadStatus = PadRead(0);
if (AutoRotate == 0) {
if (PadStatus & PADL1) Trans.vz -= 4;
if (PadStatus & PADR1) Trans.vz += 4;
if (PadStatus & PADL2) Rotate.vz -= 8;
if (PadStatus & PADR2) Rotate.vz += 8;
if (PadStatus & PADLup) Rotate.vx -= 8;
if (PadStatus & PADLdown) Rotate.vx += 8;
if (PadStatus & PADLleft) Rotate.vy -= 14;
if (PadStatus & PADLright) Rotate.vy += 14;
if (PadStatus & PADRup) Trans.vy -= 2;
if (PadStatus & PADRdown) Trans.vy += 2;
if (PadStatus & PADRleft) Trans.vx -= 2;
if (PadStatus & PADRright) Trans.vx += 2;
if (PadStatus & PADselect) {
Rotate.vx = Rotate.vy = Rotate.vz = 0;
Scale.vx = Scale.vy = Scale.vz = ONE;
Trans.vx = Trans.vy = 0;
Trans.vz = CENTERX;
}
}
if (PadStatus & PADstart) {
if (TPressed == 0) {
AutoRotate = (AutoRotate + 1) & 1;
Rotate.vx = Rotate.vy = Rotate.vz = 0;
Scale.vx = Scale.vy = Scale.vz = ONE;
Trans.vx = Trans.vy = 0;
Trans.vz = CENTERX;
}
TPressed = 1;
} else {
TPressed = 0;
}
if (AutoRotate) {
Rotate.vy += 8; // Pan
Rotate.vx += 8; // Tilt
//~ Rotate.vz += 8; // Roll
}
// Clear the current OT
ClearOTagR(ot[db], OTLEN);
// Convert and set the matrixes
RotMatrix(&Rotate, &Matrix);
TransMatrix(&Matrix, &Trans);
ScaleMatrix(&Matrix, &Scale);
SetRotMatrix(&Matrix);
SetTransMatrix(&Matrix);
for (int k = 0; k < sizeof(meshes)/sizeof(TMESH *); k++){
// Render the sample vector model
t=0;
// modelCube is a TMESH, len member == # vertices, but here it's # of triangle... So, for each tri * 3 vertices ...
for (i = 0; i < (meshes[0]->tmesh->len * 3); i += 3) {
poly = (POLY_GT3 *)nextpri;
// Initialize the primitive and set its color values
SetPolyGT3(poly);
setRGB0(poly, meshes[k]->tmesh->c[i].r , meshes[k]->tmesh->c[i].g , meshes[k]->tmesh->c[i].b);
setRGB1(poly, meshes[k]->tmesh->c[i+1].r, meshes[k]->tmesh->c[i+1].g, meshes[k]->tmesh->c[i+1].b);
setRGB2(poly, meshes[k]->tmesh->c[i+2].r, meshes[k]->tmesh->c[i+2].g, meshes[k]->tmesh->c[i+2].b);
((POLY_GT3 *)poly)->tpage = getTPage(meshes[k]->tim->mode&0x3, 0,
meshes[k]->tim->prect->x,
meshes[k]->tim->prect->y
);
// The TIMs are loaded in vram vertically on the same TPAGE; eg. Tim1 640,0, Tim1 640, 128
// We then add tim_image.prect.y to the y coord of the uvs to use the correct texture.
setUV3(poly, meshes[k]->tmesh->u[i].vx , meshes[k]->tmesh->u[i].vy + meshes[k]->tim->prect->y,
meshes[k]->tmesh->u[i+1].vx, meshes[k]->tmesh->u[i+1].vy + meshes[k]->tim->prect->y,
meshes[k]->tmesh->u[i+2].vx, meshes[k]->tmesh->u[i+2].vy + meshes[k]->tim->prect->y);
// Rotate, translate, and project the vectors and output the results into a primitive
OTz = RotTransPers(&meshes[k]->tmesh->v[meshes[k]->index[t]] , (long*)&poly->x0, &p, &Flag);
OTz += RotTransPers(&meshes[k]->tmesh->v[meshes[k]->index[t+1]], (long*)&poly->x1, &p, &Flag);
OTz += RotTransPers(&meshes[k]->tmesh->v[meshes[k]->index[t+2]], (long*)&poly->x2, &p, &Flag);
// Using RotTransPers3 is a bit faster (-31ms/frame), but you loose precision for Z-ordering
//~ OTz = RotTransPers3(
//~ &meshes[k]->tmesh->v[meshes[k]->index[t]],
//~ &meshes[k]->tmesh->v[meshes[k]->index[t+1]],
//~ &meshes[k]->tmesh->v[meshes[k]->index[t+2]],
//~ (long*)&poly->x0, (long*)&poly->x1, (long*)&poly->x2,
//~ &p,
//~ &Flag
//~ );
// Sort the primitive into the OT
OTz /= 3;
if ((OTz > 0) && (OTz < OTLEN))
AddPrim(&ot[db][OTz-2], poly);
nextpri += sizeof(POLY_GT3);
t+=3;
}
}
//~ dr_mode = (DR_MODE *)nextpri;
//~ setDrawMode(dr_mode,1,0, getTPage(tim_cube.mode&0x3, 0,
//~ tim_cube.prect->x,
//~ tim_cube.prect->y), &tws); //set texture window
//~ AddPrim(&ot[db], dr_mode);
//~ nextpri += sizeof(DR_MODE);
// Render the banner (FntPrint is always on top because it is not part of the OT)
//~ #if HI_RES
//~ FntPrint("\n\n");
//~ #endif
//~ FntPrint("\n\nGOURAUD SHADED TMESH EXAMPLE\n");
//~ FntPrint("SCHNAPPY, 2020 \n");
//~ FntPrint("BASED ON PRIMDRAW BY LAMEGUY64, 2014 \n");
FntPrint("# tris :%d \n", sizeof(ot[db])/sizeof(POLY_GT3));
FntPrint("Vsync :%d \n", vs);
FntPrint("%d ", sizeof(meshes)/sizeof(TMESH *));
FntPrint("%d ", meshes[0]->tim->prect->y);
FntFlush(-1);
display();
//~ frame = VSync(-1);
// Camera movement
if (PadStatus & PADRup) {
camera.zv += (ccos(camera.pan) * ccos(camera.tilt)) / 1024; // pan = horizontal motion, tilt = vertical. cos(pan) returns value in rang -ONE,ONE on the horiz. axis. -4096-0 = left, 0-4096 = right
camera.xv += (csin(camera.pan) * ccos(camera.tilt)) / 1024;
camera.yv += (csin(camera.tilt) * ccos(camera.tilt)) / 1024;
}
return 0;
}
if (PadStatus & PADRdown) {
camera.zv -= (ccos(camera.pan) * ccos(camera.tilt)) / 1024; // pan = horizontal motion, tilt = vertical. cos(pan) returns value in rang -ONE,ONE on the horiz. axis. -4096-0 = left, 0-4096 = right
camera.xv -= (csin(camera.pan) * ccos(camera.tilt)) / 1024;
camera.yv -= (csin(camera.tilt) * ccos(camera.tilt)) / 1024;
}
if (PadStatus & PADRleft) {
camera.zv += (csin(camera.pan)*2);
camera.xv -= (ccos(camera.pan)*2);
}
if (PadStatus & PADRright) {
camera.zv -= (csin(camera.pan)*2);
camera.xv += (ccos(camera.pan)*2);
}
if (PadStatus & PADR1) camera.yv -= ONE*1;
if (PadStatus & PADR2) camera.yv += ONE*1;
// Reset
if (PadStatus & PADselect) {
camera.x = camera.y = camera.z = 0;
camera.pan = camera.tilt = camera.rol = 0;
camera.panv = camera.tiltv = 0;
camera.xv = 0;
camera.yv = 0;
camera.zv = -150;
}
camera.x += camera.xv;
camera.y += camera.yv;
camera.z += camera.zv;
camera.pan += camera.panv;
camera.tilt += camera.tiltv;
camera.xv = 0;
camera.yv = 0;
camera.zv = 0;
camera.panv = 0;
camera.tiltv = 0;
}