Steps to reproduce:
* Create a regular reverse mount point
* Create a file "test" in the original directory
* Access the corresponding encrypted directory in the mount point (ls <encrypted dir>)
* Quickly delete the file in the original data - instead create a device node
* Access the file again, it will access the device node and attempt to read from it
Fixes https://github.com/rfjakob/gocryptfs/issues/187
Unfortunately, faccessat in Linux ignores AT_SYMLINK_NOFOLLOW,
so this is not completely atomic.
Given that the information you get from access is not very
interesting, it seems good enough.
https://github.com/rfjakob/gocryptfs/issues/165
Add faccessat(2) with a hack for symlink, because the
kernel does not actually looks at the passed flags.
From man 2 faccessat:
C library/kernel differences
The raw faccessat() system call takes only the first three argu‐
ments. The AT_EACCESS and AT_SYMLINK_NOFOLLOW flags are actually
implemented within the glibc wrapper function for faccessat().
...when opening intermedia directories to give us an
extra layer of safety.
From the FreeBSD man page:
This flag can be used to prevent applications with elevated
privileges from opening files which are even unsafe to open with O_RDONLY,
such as device nodes.
...by using the new OpenNofollow helper.
The benchmark shows a small but acceptable performance loss:
$ ./benchmark-reverse.bash
LS: 2.182
CAT: 18.221
Tracking ticket: https://github.com/rfjakob/gocryptfs/issues/165
Now that we have Fstatat we can use it in Getdents to
get rid of the path name.
Also, add an emulated version of getdents for MacOS. This allows
to drop the !HaveGetdents special cases from fusefrontend.
Modify the getdents test to test both native getdents and the emulated
version.
In PlaintextNames mode the "gocryptfs.longname." prefix does not have any
special meaning. We should not attempt to delete any .name files.
Partially fixes https://github.com/rfjakob/gocryptfs/issues/174
This is already done in regular mode, but was missing when PlaintextNames mode
is enabled. As a result, symlinks created by non-root users were still owned
by root afterwards.
Fixes https://github.com/rfjakob/gocryptfs/issues/176
In PlaintextNames mode the "gocryptfs.longname." prefix does not have any
special meaning. We should not attempt to read the directory IV or to
create special .name files.
Partially fixes https://github.com/rfjakob/gocryptfs/issues/174
If the user manages to replace the directory with
a symlink at just the right time, we could be tricked
into chown'ing the wrong file.
This change fixes the race by using fchownat, which
unfortunately is not available on darwin, hence a compat
wrapper is added.
Scenario, as described by @slackner at
https://github.com/rfjakob/gocryptfs/issues/177 :
1. Create a forward mount point with `plaintextnames` enabled
2. Mount as root user with `allow_other`
3. For testing purposes create a file `/tmp/file_owned_by_root`
which is owned by the root user
4. As a regular user run inside of the GoCryptFS mount:
```
mkdir tempdir
mknod tempdir/file_owned_by_root p &
mv tempdir tempdir2
ln -s /tmp tempdir
```
When the steps are done fast enough and in the right order
(run in a loop!), the device file will be created in
`tempdir`, but the `lchown` will be executed by following
the symlink. As a result, the ownership of the file located
at `/tmp/file_owned_by_root` will be changed.