Add overlays

This commit is contained in:
ABelliqueux 2021-11-14 18:27:50 +01:00
parent 627db26cda
commit ac41aa1db7
31 changed files with 1511 additions and 0 deletions

56
OVL/common.h Normal file
View File

@ -0,0 +1,56 @@
#pragma once
#include <sys/types.h>
#include <stdio.h>
#include <stdint.h>
#include <libgte.h>
#include <libetc.h>
#include <libgpu.h>
#include <libapi.h>
#include <libcd.h>
#include <libds.h>
#include <libpress.h>
#include <malloc.h>
#include <kernel.h>
#include "../third_party/nugget/common/syscalls/syscalls.h"
#define printf ramsyscall_printf
#define setRGB(p, r0, g0, b0) \
(p)->r = r0, (p)->g = g0, (p)->b = b0
#define VMODE 0
#define SCREENXRES 320 // Screen width
#define SCREENYRES (240 + (VMODE << 4)) // Screen height : If VMODE is 0 = 240, if VMODE is 1 = 256
#define CENTERX SCREENXRES/2 // Center of screen on x
#define CENTERY SCREENYRES/2 // Center of screen on y
#define MARGINX 0 // margins for text display
#define MARGINY 32
#define FONTSIZE 18 * 7 // Text Field Height
#define FONTX 960
#define FONTY 0
#define OTLEN 512 // Ordering Table Length
extern DRAWENV draw[2];
extern char primbuff[2][32768];
extern char *nextpri;
extern u_long ot[2][OTLEN];
extern uint8_t db;
extern uint8_t useOT;
extern CVECTOR BGcolor;
extern int timeout;
enum OverlayNumber {
MOTHERSHIP = -1,
OVERLAY_HELLO = 0,
OVERLAY_TILE = 1,
OVERLAY_POLY = 2,
OVERLAY_SPRT = 3,
OVERLAY_CUBE = 4,
OVERLAY_LIGHT = 5,
OVERLAY_PAD = 6,
};
extern enum OverlayNumber next_overlay;
extern void init(void);
extern void display(void);
extern void clearVRAM(void);
extern void LoadTexture(u_long * tim, TIM_IMAGE * tparam);

View File

@ -0,0 +1,8 @@
TARGET = hello_cubetex
SRCS = hello_cubetex.c \
TIM/cubetex.tim \
CPPFLAGS+=-DSTANDALONE
include ../../common.mk

Binary file not shown.

128
OVL/hello_cubetex/cubetex.c Normal file
View File

@ -0,0 +1,128 @@
SVECTOR modelCubeTex_mesh[] = {
{32,32,-32.0},
{32,-32,-32},
{-32,-32,-32},
{-32,32,-32},
{32,32,32},
{32,-32,32},
{-32,-32,32},
{-32,32,32}
};
SVECTOR modelCubeTex_normal[] = {
0,-0,-1,0,
0,0,1,0,
1,0,-2,0,
-9,-1,-3,0,
-1,2,-1,0,
3,1,2,0,
0,0,-1,0,
0,-0,1,0,
1,-6,3,0,
-5,-1,9,0,
-1,2,-1,0,
2,1,2,0
};
SVECTOR modelCubeTex_uv[] = {
84,84, 0, 0,
125,42, 0, 0,
84,42, 0, 0,
125,84, 0, 0,
84,125, 0, 0,
125,125, 0, 0,
1,84, 0, 0,
42,125, 0, 0,
42,84, 0, 0,
42,125, 0, 0,
84,84, 0, 0,
42,84, 0, 0,
42,1, 0, 0,
1,42, 0, 0,
42,42, 0, 0,
42,84, 0, 0,
1,42, 0, 0,
1,84, 0, 0,
84,84, 0, 0,
125,84, 0, 0,
125,42, 0, 0,
125,84, 0, 0,
84,84, 0, 0,
84,125, 0, 0,
1,84, 0, 0,
1,125, 0, 0,
42,125, 0, 0,
42,125, 0, 0,
84,125, 0, 0,
84,84, 0, 0,
42,1, 0, 0,
1,1, 0, 0,
1,42, 0, 0,
42,84, 0, 0,
42,42, 0, 0,
1,42, 0, 0
};
CVECTOR modelCubeTex_color[] = {
255,255,255, 0,
255,255,255, 0,
255,0,251, 0,
255,255,255, 0,
255,5,7, 0,
255,255,255, 0,
255,255,255, 0,
255,255,255, 0,
4,18,255, 0,
255,5,7, 0,
255,255,255, 0,
255,255,255, 0,
254,255,23, 0,
122,255,107, 0,
255,255,255, 0,
255,255,255, 0,
255,255,255, 0,
254,255,94, 0,
255,255,255, 0,
35,255,11, 0,
255,255,255, 0,
255,255,255, 0,
255,255,255, 0,
255,5,7, 0,
255,255,255, 0,
255,5,7, 0,
255,255,255, 0,
255,5,7, 0,
255,255,255, 0,
255,255,255, 0,
254,255,23, 0,
255,255,255, 0,
122,255,107, 0,
255,255,255, 0,
54,65,255, 0,
255,255,255, 0
};
int modelCubeTex_index[] = {
0,2,3,
7,5,4,
4,1,0,
5,2,1,
2,7,3,
0,7,4,
0,1,2,
7,6,5,
4,5,1,
5,6,2,
2,6,7,
0,3,7
};
TMESH modelCubeTex = {
modelCubeTex_mesh,
modelCubeTex_normal,
modelCubeTex_uv,
modelCubeTex_color,
12
};
TIM_IMAGE tim_cube;

View File

@ -0,0 +1,64 @@
#include "../common.h"
DISPENV disp[2];
DRAWENV draw[2];
u_long ot[2][OTLEN];
char primbuff[2][32768];
char * nextpri = primbuff[0];
uint8_t db = 0;
CVECTOR BGcolor = { 0, 200, 255 };
void init()
{
PadInit(0);
ResetGraph(0);
InitGeom();
SetGeomOffset(CENTERX, CENTERY);
SetGeomScreen(CENTERX);
SetDefDispEnv(&disp[0], 0, 0 , SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
SetDispMask(1);
setRGB0(&draw[0], BGcolor.r, BGcolor.g, BGcolor.b);
setRGB0(&draw[1], BGcolor.r, BGcolor.g, BGcolor.b);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(16, 16, 196, 64, 0, 256);
}
void display(void)
{
DrawSync(0);
VSync(-1);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
DrawOTag(&ot[db][OTLEN - 1]);
db = !db;
nextpri = primbuff[db];
}
void LoadTexture(u_long * tim, TIM_IMAGE * tparam)
{
OpenTIM(tim);
ReadTIM(tparam);
LoadImage(tparam->prect, tparam->paddr);
DrawSync(0);
if (tparam->mode & 0x8) {
LoadImage(tparam->crect, tparam->caddr);
DrawSync(0);
}
}
#include "hello_ovl_cubetex.c"
int main(void)
{
ovl_main_cubetex();
}

View File

@ -0,0 +1,145 @@
#include "../common.h"
#include "cubetex.c"
#ifdef STANDALONE
extern unsigned long _binary_TIM_cubetex_tim_start[];
#else
extern unsigned long _binary_OVL_hello_cubetex_TIM_cubetex_tim_start[];
#endif
int ovl_main_cubetex()
{
#ifndef STANDALONE
useOT = 1;
#endif
uint16_t i = 0;
int PadStatus;
int TPressed=0;
int AutoRotate=1;
long t, p, OTz, Flag; // t == vertex count, p == depth cueing interpolation value, OTz == value to create Z-ordered OT, Flag == see LibOver47.pdf, p.143
POLY_GT3 *poly = {0}; // pointer to a POLY_G4
SVECTOR Rotate={ 256, 256, 0, 0 }; // Rotation coordinates
VECTOR Trans={ 0, 0, CENTERX, 0 }; // Translation coordinates
VECTOR Scale={ ONE, ONE, ONE, 0 }; // ONE == 4096
MATRIX Matrix={0}; // Matrix data for the GTE
DR_MODE * dr_mode; // Pointer to dr_mode prim
RECT tws = {0, 0, 32, 32}; // Texture window coordinates : x, y, w, h
init();
#ifdef STANDALONE
LoadTexture(_binary_TIM_cubetex_tim_start, &tim_cube);
#else
LoadTexture(_binary_OVL_hello_cubetex_TIM_cubetex_tim_start, &tim_cube);
#endif
int primSet = 0;
// Main loop
while (1) {
i++;
// Read pad status
PadStatus = PadRead(0);
if (AutoRotate == 0) {
if (PadStatus & PADL1) Trans.vz -= 4;
if (PadStatus & PADR1) Trans.vz += 4;
if (PadStatus & PADL2) Rotate.vz -= 8;
if (PadStatus & PADR2) Rotate.vz += 8;
if (PadStatus & PADLup) Rotate.vx -= 8;
if (PadStatus & PADLdown) Rotate.vx += 8;
if (PadStatus & PADLleft) Rotate.vy -= 8;
if (PadStatus & PADLright) Rotate.vy += 8;
if (PadStatus & PADRup) Trans.vy -= 2;
if (PadStatus & PADRdown) Trans.vy += 2;
if (PadStatus & PADRleft) Trans.vx -= 2;
if (PadStatus & PADRright) Trans.vx += 2;
if (PadStatus & PADselect) {
Rotate.vx = Rotate.vy = Rotate.vz = 0;
Scale.vx = Scale.vy = Scale.vz = ONE;
Trans.vx = Trans.vy = 0;
Trans.vz = CENTERX;
}
}
if (PadStatus & PADstart) {
if (TPressed == 0) {
AutoRotate = (AutoRotate + 1) & 1;
Rotate.vx = Rotate.vy = Rotate.vz = 0;
Scale.vx = Scale.vy = Scale.vz = ONE;
Trans.vx = Trans.vy = 0;
Trans.vz = CENTERX;
}
TPressed = 1;
} else {
TPressed = 0;
}
if (AutoRotate) {
Rotate.vy += 8; // Pan
Rotate.vx += 8; // Tilt
}
// Clear the current OT
ClearOTagR(ot[db], OTLEN);
// Convert and set the matrices
RotMatrix(&Rotate, &Matrix);
TransMatrix(&Matrix, &Trans);
ScaleMatrix(&Matrix, &Scale);
SetRotMatrix(&Matrix);
SetTransMatrix(&Matrix);
// Render the sample vector model
// modelCubeTex is a TMESH, len member == # vertices, but here it's # of triangle... So, for each tri * 3 vertices ...
//~ if (primSet == 0){
for (int v = 0; v < (modelCubeTex.len*3); v += 3) {
poly = (POLY_GT3 *)nextpri;
// Initialize the primitive and set its color values
SetPolyGT3(poly);
((POLY_GT3 *)poly)->tpage = getTPage(tim_cube.mode&0x3, 0,
tim_cube.prect->x,
tim_cube.prect->y
);
setRGB0(poly, modelCubeTex.c[v].r , modelCubeTex.c[v].g , modelCubeTex.c[v].b);
setRGB1(poly, modelCubeTex.c[v+2].r, modelCubeTex.c[v+2].g, modelCubeTex.c[v+2].b);
setRGB2(poly, modelCubeTex.c[v+1].r, modelCubeTex.c[v+1].g, modelCubeTex.c[v+1].b);
setUV3(poly, modelCubeTex.u[v].vx, modelCubeTex.u[v].vy,
modelCubeTex.u[v+2].vx, modelCubeTex.u[v+2].vy,
modelCubeTex.u[v+1].vx, modelCubeTex.u[v+1].vy);
// Rotate, translate, and project the vectors and output the results into a primitive
OTz = RotTransPers(&modelCubeTex_mesh[modelCubeTex_index[v]] , (long*)&poly->x0, &p, &Flag);
OTz += RotTransPers(&modelCubeTex_mesh[modelCubeTex_index[v+2]], (long*)&poly->x1, &p, &Flag);
OTz += RotTransPers(&modelCubeTex_mesh[modelCubeTex_index[v+1]], (long*)&poly->x2, &p, &Flag);
// Sort the primitive into the OT
OTz /= 3;
if ((OTz > 0) && (OTz < OTLEN))
AddPrim(&ot[db][OTz-2], poly);
nextpri += sizeof(POLY_GT3);
}
//~ dr_mode = (DR_MODE *)nextpri;
//~ setDrawMode(dr_mode,1,0, getTPage(tim_cube.mode&0x3, 0,
//~ tim_cube.prect->x,
//~ tim_cube.prect->y), &tws); //set texture window
//~ AddPrim(&ot[db], dr_mode);
//~ nextpri += sizeof(DR_MODE);
//~ primSet = 1;
//~ } else {
//~ nextpri = primbuff[db];
//~ for (int v = 0; v < (modelCubeTex.len*3); v += 3) {
//~ // Rotate, translate, and project the vectors and output the results into a primitive
//~ OTz = RotTransPers(&modelCubeTex_mesh[modelCubeTex_index[v]] , (long*) &((POLY_GT3 * ) (&(primbuff[0][ sizeof(POLY_GT3) * (v/3) ]) ) )->x0, &p, &Flag);
//~ OTz += RotTransPers(&modelCubeTex_mesh[modelCubeTex_index[v+2]], (long*) &((POLY_GT3 * ) (&(primbuff[0][ sizeof(POLY_GT3) * (v/3) ]) ) )->x1, &p, &Flag);
//~ OTz += RotTransPers(&modelCubeTex_mesh[modelCubeTex_index[v+1]], (long*) &((POLY_GT3 * ) (&(primbuff[0][ sizeof(POLY_GT3) * (v/3) ]) ) )->x2, &p, &Flag);
//~ // Sort the primitive into the OT
//~ OTz /= 3;
//~ if ((OTz > 0) && (OTz < OTLEN))
//~ AddPrim(&ot[db][OTz-2], (POLY_GT3 * ) (&(primbuff[0][ sizeof(POLY_GT3) * (v/3) ])) );
//~ }
//~ }
FntPrint(0, "Hello textured cube! %d\n", i);
FntFlush(0);
#ifndef STANDALONE
if (i == timeout){
useOT = 0;
next_overlay = MOTHERSHIP;
break;
}
#endif
display();
}
return next_overlay;
}

7
OVL/hello_light/Makefile Normal file
View File

@ -0,0 +1,7 @@
TARGET = hello_light
SRCS = hello_light.c \
CPPFLAGS+=-DSTANDALONE
include ../../common.mk

167
OVL/hello_light/cube.c Normal file
View File

@ -0,0 +1,167 @@
SVECTOR modelCube_mesh[] = {
{ -128,128,128 },
{ 128,128,128 },
{ 128,128,-128 },
{ -128,128,-128 },
{ -128,-128,128 },
{ 128,-128,128 },
{ 128,-128,-128 },
{ -128,-128,-128 }
};
SVECTOR modelCube_normal[] = {
2365,-2365,-2365, 0,
-2365,-2365,-2365, 0,
-2365,-2365,2365, 0,
2365,-2365,2365, 0,
2365,2365,-2365, 0,
-2365,2365,-2365, 0,
-2365,2365,2365, 0,
2365,2365,2365, 0
};
CVECTOR modelCube_color[] = {
255,237,0, 0,
255,235,0, 0,
255,236,0, 0,
255,2,0, 0,
254,3,0, 0,
255,8,0, 0,
229,0,255, 0,
229,0,255, 0,
229,0,255, 0,
5,16,250, 0,
0,12,255, 0,
0,12,255, 0,
4,251,25, 0,
0,255,26, 0,
0,255,26, 0,
0,248,255, 0,
0,248,255, 0,
0,248,255, 0,
255,237,0, 0,
255,237,0, 0,
255,235,0, 0,
255,2,0, 0,
255,6,2, 0,
254,3,0, 0,
229,0,255, 0,
232,21,232, 0,
229,0,255, 0,
5,16,250, 0,
2,13,253, 0,
0,12,255, 0,
4,251,25, 0,
0,255,26, 0,
0,255,26, 0,
0,248,255, 0,
0,248,255, 0,
0,248,255, 0
};
int modelCube_index[] = {
0,2,3,
7,5,4,
4,1,0,
5,2,1,
2,7,3,
0,7,4,
0,1,2,
7,6,5,
4,5,1,
5,6,2,
2,6,7,
0,3,7
};
TMESH modelCube = {
modelCube_mesh,
modelCube_normal,
0,
modelCube_color,
12
};
SVECTOR modelCube1_mesh[] = {
{ -128,128,128 },
{ 128,128,128 },
{ 128,128,-128 },
{ -128,128,-128 },
{ -128,-128,128 },
{ 128,-128,128 },
{ 128,-128,-128 },
{ -128,-128,-128 }
};
SVECTOR modelCube1_normal[] = {
2365,-2365,-2365, 0,
-2365,-2365,-2365, 0,
-2365,-2365,2365, 0,
2365,-2365,2365, 0,
2365,2365,-2365, 0,
-2365,2365,-2365, 0,
-2365,2365,2365, 0,
2365,2365,2365, 0
};
CVECTOR modelCube1_color[] = {
255,237,0, 0,
255,235,0, 0,
255,236,0, 0,
255,2,0, 0,
254,3,0, 0,
255,8,0, 0,
229,0,255, 0,
229,0,255, 0,
229,0,255, 0,
5,16,250, 0,
0,12,255, 0,
0,12,255, 0,
4,251,25, 0,
0,255,26, 0,
0,255,26, 0,
0,248,255, 0,
0,248,255, 0,
0,248,255, 0,
255,237,0, 0,
255,237,0, 0,
255,235,0, 0,
255,2,0, 0,
255,6,2, 0,
254,3,0, 0,
229,0,255, 0,
232,21,232, 0,
229,0,255, 0,
5,16,250, 0,
2,13,253, 0,
0,12,255, 0,
4,251,25, 0,
0,255,26, 0,
0,255,26, 0,
0,248,255, 0,
0,248,255, 0,
0,248,255, 0
};
int modelCube1_index[] = {
0,2,3,
7,5,4,
4,1,0,
5,2,1,
2,7,3,
0,7,4,
0,1,2,
7,6,5,
4,5,1,
5,6,2,
2,6,7,
0,3,7
};
TMESH modelCube1 = {
modelCube1_mesh,
modelCube1_normal,
0,
modelCube1_color,
12
};

View File

@ -0,0 +1,57 @@
#include "../common.h"
DISPENV disp[2];
DRAWENV draw[2];
u_long ot[2][OTLEN];
char primbuff[2][32768];
char * nextpri = primbuff[0];
uint8_t db = 0;
CVECTOR BGcolor = { 40, 120, 168 };
// Prototypes
void init()
{
// Reset the GPU before doing anything and the controller
PadInit(0);
ResetGraph(0);
// Initialize and setup the GTE
InitGeom();
SetGeomOffset(CENTERX, CENTERY); // x, y offset
SetGeomScreen(CENTERX); // Distance between eye and screen
// Set the display and draw environments
SetDefDispEnv(&disp[0], 0, 0 , SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
SetDispMask(1);
setRGB0(&draw[0], BGcolor.r, BGcolor.g, BGcolor.b);
setRGB0(&draw[1], BGcolor.r, BGcolor.g, BGcolor.b);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
// Init font system
FntLoad(960, 0);
FntOpen(16, 16, 196, 64, 0, 256);
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
DrawOTag(&ot[db][OTLEN - 1]);
db = !db;
nextpri = primbuff[db];
}
#include "hello_ovl_light.c"
int main()
{
ovl_main_light();
}

View File

@ -0,0 +1,201 @@
#include "../common.h"
// Sample vector model
#include "cube.c"
long t, p, OTz, Flag;
// Lighting
CVECTOR BGc = {150, 50, 75, 0};
VECTOR BKc = {128, 128, 128, 0};
SVECTOR lgtang = {0, 0, 0};
MATRIX rotlgt, rotcube, light;
MATRIX lgtmat = {
// X Y Z
-ONE, -ONE, ONE, // Lightsource 1 : here, the light source is at the Bottom-Left of the screen, and points into the screen.
0, 0, 0, // Lightsource 2
0, 0, 0, // Lightsource 3
};
// Local Color Matrix
MATRIX cmat = {
// L1 L2 L3
4096, 0, 0, // R
4096, 0, 0, // G
4096, 0, 0 // B
};
static void setLightEnv()
{
// Set light env
// Set far color
SetFarColor( BGc.r, BGc.g, BGc.b );
// Set Ambient color
SetBackColor( BKc.vx, BKc.vy, BKc.vz );
// Set Color matrix
SetColorMatrix(&cmat);
// Set Fog settings
SetFogNearFar( 1200, 2200, SCREENXRES );
}
int ovl_main_light()
{
#ifndef STANDALONE
useOT = 1;
#endif
uint16_t i = 0;
int PadStatus;
int TPressed=0;
int AutoRotate=1;
// Rotating cube
POLY_G3 * poly;
SVECTOR Rotate={ ONE/6,ONE/6,ONE/6 }; // Rotation coordinates
VECTOR Trans={ -SCREENXRES/2, 0, CENTERX * 3, 0 }; // Translation coordinates
VECTOR Scale={ ONE/2, ONE/2, ONE/2, 0 }; // Scaling coordinates : ONE == 4096
MATRIX Matrix={0}; // Matrix data for the GTE
// Static cube
POLY_G3 * poly1; // pointer to a POLY_G4
SVECTOR Rotate1={ ONE/6, ONE/6, ONE/6, 0 }; // Rotation coordinates
VECTOR Trans1={ SCREENXRES/2, 0, CENTERX * 3, 0 }; // Translation coordinates
VECTOR Scale1={ ONE/2, ONE/2, ONE/2, 0 }; // Scaling coordinates : ONE == 4096
MATRIX Matrix1={0}; // Matrix data for the GTE
init();
setLightEnv();
// Main loop
while (1) {
i++;
// Read pad status
PadStatus = PadRead(0);
if (AutoRotate == 0) {
if (PadStatus & PADL1) Trans.vz -= 4;
if (PadStatus & PADR1) Trans.vz += 4;
if (PadStatus & PADL2) Rotate.vz -= 8;
if (PadStatus & PADR2) Rotate.vz += 8;
if (PadStatus & PADLup) Rotate.vx -= 8;
if (PadStatus & PADLdown) Rotate.vx += 8;
if (PadStatus & PADLleft) Rotate.vy -= 8;
if (PadStatus & PADLright) Rotate.vy += 8;
if (PadStatus & PADRup) Trans.vy -= 2;
if (PadStatus & PADRdown) Trans.vy += 2;
if (PadStatus & PADRleft) Trans.vx -= 2;
if (PadStatus & PADRright) Trans.vx += 2;
}
if (PadStatus & PADstart) {
if (TPressed == 0) {
AutoRotate = (AutoRotate + 1) & 1;
Rotate.vy = Rotate.vx = Rotate.vz = ONE/6;
Scale.vx = Scale.vy = Scale.vz = ONE/2;
Trans.vx = -SCREENXRES/2;
Trans.vy = 0;
Trans.vz = CENTERX * 3;
}
TPressed = 1;
} else {
TPressed = 0;
}
if (AutoRotate) {
Rotate.vy += 8; // Pan
Rotate.vx += 8; // Tilt
//~ Rotate.vz += 8; // Roll
}
// Clear the current OT
ClearOTagR(ot[db], OTLEN);
// Render the sample vector model
t=0;
// modelCube is a TMESH, len member == # vertices, but here it's # of triangle... So, for each tri * 3 vertices ...
for (int v = 0; v < (modelCube.len*3); v += 3) {
poly = (POLY_G3 *)nextpri;
// Initialize the primitive and set its color values
SetPolyG3(poly);
// Rotate, translate, and project the vectors and output the results into a primitive
// Could be replaced with one call with RotTransPers3()
OTz = RotTransPers(&modelCube_mesh[modelCube_index[t]] , (long*)&poly->x0, &p, &Flag);
OTz += RotTransPers(&modelCube_mesh[modelCube_index[t+2]], (long*)&poly->x1, &p, &Flag);
OTz += RotTransPers(&modelCube_mesh[modelCube_index[t+1]], (long*)&poly->x2, &p, &Flag);
// Find light color
// Work color vectors
CVECTOR outCol, outCol1, outCol2 = { 0,0,0,0 };
// Find local color from three normal vectors and perform depth cueing.
// Could be replaced with one call with NormalColorDpq3()
NormalColorDpq(&modelCube.n[ modelCube_index[t+0] ], &modelCube.c[v+0], p, &outCol);
NormalColorDpq(&modelCube.n[ modelCube_index[t+2] ], &modelCube.c[v+2], p, &outCol1);
NormalColorDpq(&modelCube.n[ modelCube_index[t+1] ], &modelCube.c[v+1], p, &outCol2);
// Set vertex colors
setRGB0(poly, outCol.r, outCol.g , outCol.b);
setRGB1(poly, outCol1.r, outCol1.g, outCol1.b);
setRGB2(poly, outCol2.r, outCol2.g, outCol2.b);
// Sort the primitive into the OT
OTz /= 3;
if ((OTz > 0) && (OTz < OTLEN))
AddPrim(&ot[db][OTz-2], poly);
nextpri += sizeof(POLY_G3);
t+=3;
}
// Find and apply light rotation matrix
// Find rotmat from light angles
RotMatrix_gte(&lgtang, &rotlgt);
// Find rotmat from cube angles
RotMatrix_gte(&Rotate, &rotcube);
// RotMatrix cube * RotMatrix light
MulMatrix0(&rotcube, &rotlgt, &rotlgt);
// Light Matrix * RotMatrix light
MulMatrix0(&lgtmat, &rotlgt, &light);
// Set new light matrix
SetLightMatrix(&light);
// Convert and set the matrices
// Find Rotation matrix from object's angles
RotMatrix(&Rotate, &Matrix);
// Find Scale matrix from object's angles
ScaleMatrix(&Matrix, &Scale);
// Find Translation matrix from object's angles
TransMatrix(&Matrix, &Trans);
// Set GTE's rotation matrix
SetRotMatrix(&Matrix);
// Set GTE's Translation matrix
SetTransMatrix(&Matrix);
// Draw static cube
t=0;
for (int v = 0; v < (modelCube1.len*3); v += 3) {
poly1 = (POLY_G3 *)nextpri;
SetPolyG3(poly1);
OTz = RotTransPers(&modelCube1_mesh[modelCube1_index[t]] , (long*)&poly1->x0, &p, &Flag);
OTz += RotTransPers(&modelCube1_mesh[modelCube1_index[t+2]], (long*)&poly1->x1, &p, &Flag);
OTz += RotTransPers(&modelCube1_mesh[modelCube1_index[t+1]], (long*)&poly1->x2, &p, &Flag);
CVECTOR outCol = { 0,0,0,0 };
CVECTOR outCol1 = { 0,0,0,0 };
CVECTOR outCol2 = { 0,0,0,0 };
NormalColorDpq(&modelCube1.n[ modelCube1_index[t+0] ], &modelCube1.c[v+0], p, &outCol);
NormalColorDpq(&modelCube1.n[ modelCube1_index[t+2] ], &modelCube1.c[v+2], p, &outCol1);
NormalColorDpq(&modelCube1.n[ modelCube1_index[t+1] ], &modelCube1.c[v+1], p, &outCol2);
setRGB0(poly1, outCol.r, outCol.g , outCol.b);
setRGB1(poly1, outCol1.r, outCol1.g, outCol1.b);
setRGB2(poly1, outCol2.r, outCol2.g, outCol2.b);
OTz /= 3;
if ((OTz > 0) && (OTz < OTLEN))
AddPrim(&ot[db][OTz-2], poly1);
nextpri += sizeof(POLY_G3);
t+=3;
}
// See l.216
RotMatrix_gte(&lgtang, &rotlgt);
RotMatrix_gte(&Rotate1, &rotcube);
MulMatrix0(&rotcube, &rotlgt, &rotlgt);
MulMatrix0(&lgtmat, &rotlgt, &light);
SetLightMatrix(&light);
// See l.227
RotMatrix(&Rotate1, &Matrix1);
ScaleMatrix(&Matrix1, &Scale1);
TransMatrix(&Matrix1, &Trans1);
SetRotMatrix(&Matrix1);
SetTransMatrix(&Matrix1);
FntPrint(0, "Hello lightsources !\n %d", i);
FntFlush(0);
#ifndef STANDALONE
if (i == timeout){
useOT = 0;
next_overlay = MOTHERSHIP;
break;
}
#endif
display();
}
return next_overlay;
}

View File

@ -0,0 +1,7 @@
TARGET = hello_world
SRCS = hello_world.c \
CPPFLAGS+=-DSTANDALONE
include ../../common.mk

View File

@ -0,0 +1,25 @@
#include "../common.h"
int ovl_main_hello(void)
{
uint16_t i = 0;
init();
while(1)
{
i++;
#ifndef STANDALONE
if (i == timeout){
next_overlay = MOTHERSHIP;
break;
}
FntPrint(0, "Hello world ! %d\n", i);
#else
FntPrint(0, "Hello standalone ! %d\n", i);
#endif
FntFlush(0);
display();
}
return next_overlay;
};

View File

@ -0,0 +1,50 @@
#include "../common.h"
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes
char primbuff[2][32768]; // double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes
char *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0]
uint8_t db = 0; // index of which buffer is used, values 0, 1
CVECTOR BGcolor = { 0, 255, 100 };
void init(void)
{
ResetCallback();
ResetGraph(3);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], BGcolor.r, BGcolor.g, BGcolor.b); // set color for first draw area
setRGB0(&draw[1], BGcolor.r, BGcolor.g, BGcolor.b); // set color for second draw area
SetDispMask(1);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
db = !db;
}
#include "hello_ovl_world.c"
int main(void)
{
ovl_main_hello();
};

7
OVL/hello_pad/Makefile Normal file
View File

@ -0,0 +1,7 @@
TARGET = hello_pad
SRCS = hello_pad.c \
CPPFLAGS+=-DSTANDALONE
include ../../common.mk

View File

@ -0,0 +1,94 @@
#include "../common.h"
int ovl_main_pad()
{
#ifndef STANDALONE
useOT = 1;
#endif
uint16_t i = 0;
TILE * PADL; // Tile primitives
TILE * TRIGGERL;
TILE * PADR;
TILE * TRIGGERR;
TILE * START, * SELECT;
int pad = 0;
init();
while (1)
{
i++;
ClearOTagR(ot[db], OTLEN);
// D-cross
PADL = (TILE *)nextpri;
setTile(PADL);
setRGB0(PADL, 0, 0, 255);
setXY0(PADL, CENTERX - 80, CENTERY);
setWH(PADL, 24, 24);
addPrim(ot[db], PADL);
nextpri += sizeof(TILE);
// L1+L2
TRIGGERL = (TILE *)nextpri;
setTile(TRIGGERL);
setRGB0(TRIGGERL, 255, 0, 0);
setXY0(TRIGGERL, CENTERX - 80, CENTERY - 80);
setWH(TRIGGERL, 24, 24);
addPrim(ot[db], TRIGGERL);
nextpri += sizeof(TILE);
// /\, X, O, []
PADR = (TILE *)nextpri;
setTile(PADR);
setRGB0(PADR, 0, 255, 0);
setXY0(PADR, CENTERX + 50, CENTERY);
setWH(PADR, 24, 24);
addPrim(ot[db], PADR);
nextpri += sizeof(TILE);
// R1+R2
TRIGGERR = (TILE *)nextpri;
setTile(TRIGGERR);
setRGB0(TRIGGERR, 255, 0, 255);
setXY0(TRIGGERR, CENTERX + 50, CENTERY -80);
setWH(TRIGGERR, 24, 24);
addPrim(ot[db], TRIGGERR);
nextpri += sizeof(TILE);
// START + SELECT
START = (TILE *)nextpri;
setTile(START);
setRGB0(START, 240, 240, 240);
setXY0(START, CENTERX - 16, CENTERY - 36);
setWH(START, 24, 24);
addPrim(ot[db], START);
nextpri += sizeof(TILE);
// Pad stuff
pad = PadRead(0); // Read pads input. id is unused, always 0.
// PadRead() returns a 32 bit value, where input from pad 1 is stored in the low 2 bytes and input from pad 2 is stored in the high 2 bytes. (https://matiaslavik.wordpress.com/2015/02/13/diving-into-psx-development/)
// D-pad
if(pad & PADLup) {PADL->y0 = CENTERY - 16;} // 🡩 // To access pad 2, use ( pad >> 16 & PADLup)...
if(pad & PADLdown) {PADL->y0 = CENTERY + 16;} // 🡫
if(pad & PADLright){PADL->x0 = CENTERX - 64;} // 🡪
if(pad & PADLleft) {PADL->x0 = CENTERX - 96;} // 🡨
// Buttons
if(pad & PADRup) {PADR->y0 = CENTERY - 16;} // △
if(pad & PADRdown) {PADR->y0 = CENTERY + 16;} //
if(pad & PADRright){PADR->x0 = CENTERX + 66;} // ⭘
if(pad & PADRleft) {PADR->x0 = CENTERX + 34;} // ⬜
// Shoulder buttons
if(pad & PADL1){TRIGGERL->y0 = CENTERY - 64;} // L1
if(pad & PADL2){TRIGGERL->y0 = CENTERY - 96;} // L2
if(pad & PADR1){TRIGGERR->y0 = CENTERY - 64;} // R1
if(pad & PADR2){TRIGGERR->y0 = CENTERY - 96;} // R2
// Start & Select
if(pad & PADstart){START->w = 32; START->h = 32;START->x0 -= 4;START->y0 -= 4;} // START
if(pad & PADselect){START->r0 = 0;} // SELECT
FntPrint(0, "Hello Pad! %d", i);
FntFlush(0);
#ifndef STANDALONE
if (i == timeout){
useOT = 0;
next_overlay = MOTHERSHIP;
break;
}
#endif
display();
}
return next_overlay;
}

50
OVL/hello_pad/hello_pad.c Normal file
View File

@ -0,0 +1,50 @@
#include "../common.h"
DISPENV disp[2];
DRAWENV draw[2];
u_long ot[2][OTLEN];
char primbuff[2][32768];
char *nextpri = primbuff[0];
uint8_t db = 0;
CVECTOR BGcolor = { 140, 160, 40 };
void init()
{
ResetGraph(0);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
SetDispMask(1);
setRGB0(&draw[0], BGcolor.r, BGcolor.g, BGcolor.b);
setRGB0(&draw[1], BGcolor.r, BGcolor.g, BGcolor.b);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
DrawOTag(&ot[db][OTLEN - 1]);
db = !db;
nextpri = primbuff[db];
}
#include "hello_ovl_pad.c"
int main(void)
{
ovl_main_pad();
}

7
OVL/hello_poly/Makefile Normal file
View File

@ -0,0 +1,7 @@
TARGET = hello_poly
SRCS = hello_poly.c \
CPPFLAGS+=-DSTANDALONE
include ../../common.mk

View File

@ -0,0 +1,71 @@
#include "../common.h"
int ovl_main_poly(void)
{
#ifndef STANDALONE
useOT = 1;
#endif
uint16_t i = 0;
MATRIX IDMATRIX = {0};
POLY_F4 *poly = {0};
SVECTOR RotVector = {0, 0, 0};
VECTOR MovVector = {0, 0, CENTERX, 0};
SVECTOR VertPos[4] = {
{-32, -32, 1 },
{-32, 32, 1 },
{ 32, -32, 1 },
{ 32, 32, 1 }
};
MATRIX PolyMatrix = IDMATRIX;
long polydepth;
long polyflag;
long OTz;
init();
while (1)
{
ClearOTagR(ot[db], OTLEN);
poly = (POLY_F4 *)nextpri; // Set poly to point to the address of the next primitiv in the buffer
// Set transform matrices for this polygon
RotMatrix(&RotVector, &PolyMatrix); // Apply rotation matrix
TransMatrix(&PolyMatrix, &MovVector);
SetRotMatrix(&PolyMatrix); // Set default rotation matrix
SetTransMatrix(&PolyMatrix); // Set default transformation matrix
setPolyF4(poly); // Initialize poly as a POLY_F4
setRGB0(poly, 255, 255, 0); // Set poly color
// RotTransPers
OTz = RotTransPers4(
&VertPos[0], &VertPos[1], &VertPos[2], &VertPos[3],
(long*)&poly->x0, (long*)&poly->x1, (long*)&poly->x2, (long*)&poly->x3,
&polydepth,
&polyflag
); // Perform coordinate and perspective transformation for 4 vertices
RotVector.vy += 4;
RotVector.vz += 4; // Apply rotation on Z-axis. On PSX, the Z-axis is pointing away from the screen.
//~ addPrim(ot[db], poly); // add poly to the Ordering table
addPrim(ot[db][OTLEN-1], poly); // add poly to the Ordering table
nextpri += sizeof(POLY_F4); // increment nextpri address with size of a POLY_F4 struct
i++;
FntPrint(0, "Hello Poly ! %d", i);
FntFlush(0);
#ifndef STANDALONE
if (i == timeout){
useOT = 0;
next_overlay = MOTHERSHIP;
break;
}
#endif
display();
}
return next_overlay;
}

View File

@ -0,0 +1,57 @@
#include "../common.h"
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes
char primbuff[2][32768]; // double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes
char *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0]
uint8_t db = 0; // index of which buffer is used, values 0, 1
CVECTOR BGcolor = { 0, 127, 60 };
void init(void)
{
ResetCallback();
ResetGraph(3);
// Initialize and setup the GTE
InitGeom();
SetGeomOffset(CENTERX,CENTERY);
SetGeomScreen(CENTERX);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], BGcolor.r, BGcolor.g, BGcolor.b); // set color for first draw area
setRGB0(&draw[1], BGcolor.r, BGcolor.g, BGcolor.b); // set color for second draw area
SetDispMask(1);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
DrawOTag(&ot[db][OTLEN - 1]);
db = !db;
nextpri = primbuff[db];
}
#include "hello_ovl_poly.c"
int main(void)
{
ovl_main_poly();
}

10
OVL/hello_sprt/Makefile Normal file
View File

@ -0,0 +1,10 @@
TARGET = hello_sprt
SRCS = hello_sprt.c \
TIM/TIM16.tim \
TIM/TIM8.tim \
TIM/TIM4.tim \
CPPFLAGS+=-DSTANDALONE
include ../../common.mk

Binary file not shown.

BIN
OVL/hello_sprt/TIM/TIM4.tim Normal file

Binary file not shown.

BIN
OVL/hello_sprt/TIM/TIM8.tim Normal file

Binary file not shown.

View File

@ -0,0 +1,112 @@
#include "../common.h"
#define DBG_FNTX 36
#define DBG_FNTY 168
// Embedded TIMs
#ifdef STANDALONE
extern unsigned long _binary_TIM_TIM16_tim_start[];
extern unsigned long _binary_TIM_TIM8_tim_start[];
extern unsigned long _binary_TIM_TIM4_tim_start[];
#else
extern unsigned long _binary_OVL_hello_sprt_TIM_TIM16_tim_start[];
extern unsigned long _binary_OVL_hello_sprt_TIM_TIM8_tim_start[];
extern unsigned long _binary_OVL_hello_sprt_TIM_TIM4_tim_start[];
#endif
TIM_IMAGE TIM_16;
TIM_IMAGE TIM_8;
TIM_IMAGE TIM_4;
int ovl_main_sprt(void)
{
#ifndef STANDALONE
useOT = 1;
#endif
uint16_t i = 0;
SPRT * sprt_16b; // Define 3 pointers to SPRT struct
SPRT * sprt_8b;
SPRT * sprt_4b;
DR_TPAGE * tpage_16b; // Define 3 pointers to DR_TPAGE struct. We need three because our images are on three
DR_TPAGE * tpage_8b; // different texture pages.
DR_TPAGE * tpage_4b;
init();
#ifdef STANDALONE
LoadTexture(_binary_TIM_TIM16_tim_start, &TIM_16); // Load everything to vram
LoadTexture(_binary_TIM_TIM8_tim_start, &TIM_8);
LoadTexture(_binary_TIM_TIM4_tim_start, &TIM_4);
#else
LoadTexture(_binary_OVL_hello_sprt_TIM_TIM16_tim_start, &TIM_16); // Load everything to vram
LoadTexture(_binary_OVL_hello_sprt_TIM_TIM8_tim_start, &TIM_8);
LoadTexture(_binary_OVL_hello_sprt_TIM_TIM4_tim_start, &TIM_4);
#endif
while (1)
{
i++;
ClearOTagR(ot[db], OTLEN);
// Loading a 16 bit TIM
sprt_16b = (SPRT *)nextpri; // Cast whats at nexpri as a SPRT named sprt_16b
setSprt(sprt_16b); // Initialize the SPRT struct
setRGB0(sprt_16b, 128, 128, 128); // Set RGB color. 128,128,128 is neutral. You can color the image by adjusting these values
setXY0(sprt_16b, 28, MARGINY); // Set sprite position
setWH(sprt_16b, 64, 128 ); // Set sprite width and height
addPrim(ot[db][OTLEN-2], sprt_16b); // add the sprite primitive to the ordering table
nextpri += sizeof(SPRT); // increment nextpri so that it points just after sprt_16b in the primitive buffer
// Set Texture page for the 16bit tim : 768, 0 - No CLUT
// Note : You need to use setDrawTPage each time you want to use a texture that's on a different texture page
tpage_16b = (DR_TPAGE*)nextpri;
setDrawTPage(tpage_16b, 0, 1, // Set the Texture Page the texture we want resides on.
getTPage(TIM_16.mode&0x3, 0, // Here we are using bitmasking to deduce the picture mode : &0x3
TIM_16.prect->x, TIM_16.prect->y)); // In binary, 3 is 11, so we only keep the first two bits
// Values can be 00 (0), 01 (1), 10(2), respectively, 4bpp, 8bpp, 15bpp, 24bpp. See Fileformat47.pdf, p.180
// Similarly, we could use bitmasking to deduce if there is a CLUT by bitmasking the 4th bit : if(TIM_IMAGE.mode & 0x8) LoadImage... :
addPrim(ot[db][OTLEN-2], tpage_16b); // add the sprite primitive to the ordering table
nextpri += sizeof(DR_TPAGE); // Advance next primitive address
// Loading a 8 bit TIM
sprt_8b = (SPRT *)nextpri;
setSprt(sprt_8b);
setRGB0(sprt_8b, 128, 128, 128);
setXY0(sprt_8b, sprt_16b->x0 + sprt_16b->w + 32, MARGINY);
setWH(sprt_8b, 64, 128 );
setClut(sprt_8b, TIM_8.crect->x, TIM_8.crect->y); // Only difference here is we set the CLUT to the position of the VRAM we loaded the palette earlier (see LoadTexture())
addPrim(ot[db][OTLEN-2], sprt_8b);
nextpri += sizeof(SPRT);
// Set Texture page for the 8bit tim : 512, 256 - CLUT is at 0, 480
tpage_8b = (DR_TPAGE*)nextpri;
setDrawTPage(tpage_8b, 0, 1,
getTPage(TIM_8.mode&0x3, 0,
TIM_8.prect->x, TIM_8.prect->y));
addPrim(ot[db][OTLEN-2], tpage_8b);
nextpri += sizeof(DR_TPAGE);
// Loading a 4 bit TIM
sprt_4b = (SPRT *)nextpri;
setSprt(sprt_4b);
setRGB0(sprt_4b, 128, 128, 128);
setXY0(sprt_4b, sprt_8b->x0 + sprt_8b->w + 32, MARGINY);
setWH(sprt_4b, 64, 128 );
setClut(sprt_4b, TIM_4.crect->x, TIM_4.crect->y);
addPrim(ot[db][OTLEN-2], sprt_4b);
nextpri += sizeof(SPRT);
// Set Texture page for the 4bit tim : 512, 256 - CLUT is at 0, 480
tpage_4b = (DR_TPAGE*)nextpri;
setDrawTPage(tpage_4b, 0, 1,
getTPage(TIM_4.mode&0x3, 0,
TIM_4.prect->x, TIM_4.prect->y));
addPrim(ot[db][OTLEN-2], tpage_4b);
nextpri += sizeof(DR_TPAGE);
FntPrint(0, "16 Bit! ");
FntPrint(0, "8 Bit! ");
FntPrint(0, "4 Bit!\n\n");
FntPrint(0, "Check VRAM in emu to see the dif");
FntFlush(0);
#ifndef STANDALONE
if (i == timeout){
useOT = 0;
next_overlay = MOTHERSHIP;
break;
}
#endif
display();
}
return next_overlay;
}

View File

@ -0,0 +1,59 @@
#include "../common.h"
DISPENV disp[2];
DRAWENV draw[2];
u_long ot[2][OTLEN];
char primbuff[2][32768];
char * nextpri = primbuff[0];
uint8_t db = 0;
CVECTOR BGcolor = { 255, 108, 0 };
void LoadTexture(u_long * tim, TIM_IMAGE * tparam){ // This part is from Lameguy64's tutorial series : lameguy64.net/svn/pstutorials/chapter1/3-textures.html login/pw: annoyingmous
OpenTIM(tim); // Open the tim binary data, feed it the address of the data in memory
ReadTIM(tparam); // This read the header of the TIM data and sets the corresponding members of the TIM_IMAGE structure
LoadImage(tparam->prect, tparam->paddr); // Transfer the data from memory to VRAM at position prect.x, prect.y
DrawSync(0); // Wait for the drawing to end
if (tparam->mode & 0x8){ // check 4th bit // If 4th bit == 1, TIM has a CLUT
LoadImage(tparam->crect, tparam->caddr); // Load it to VRAM at position crect.x, crect.y
DrawSync(0); // Wait for drawing to end
}
}
void init(void)
{
ResetGraph(0);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
SetDispMask(1); // Display on screen
setRGB0(&draw[0], BGcolor.r, BGcolor.g, BGcolor.b);
setRGB0(&draw[1], BGcolor.r, BGcolor.g, BGcolor.b);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(36, 168, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
DrawOTag(&ot[db][OTLEN - 1]);
db = !db;
nextpri = primbuff[db];
}
#include "hello_ovl_sprt.c"
int main(void)
{
ovl_main_sprt();
}

7
OVL/hello_tile/Makefile Normal file
View File

@ -0,0 +1,7 @@
TARGET = hello_tile
SRCS = hello_tile.c \
CPPFLAGS+=-DSTANDALONE
include ../../common.mk

View File

@ -0,0 +1,70 @@
#include "../common.h"
int ovl_main_tile(void)
{
#ifndef STANDALONE
useOT = 1;
#endif
uint16_t i = 0;
TILE * blue_tile;
TILE * pink_tile;
// This one is added at a different OT index
TILE * yellow_tile;
init();
while(1)
{
// Initialize the reversed ordering table. This means the elements at index OTLEN - 1 is drawn first.
ClearOTagR(ot[db], OTLEN);
// yellow_tile
yellow_tile = (TILE * ) nextpri; // yellow_tile is a pointer to primbuf content at adress nextpri, that's cast (type converted) to a TILE struc.
setTile(yellow_tile); // initialize the TILE structure ( fill the length and tag(?) value )
setXY0(yellow_tile, CENTERX - 32 , CENTERY - 48); // Set X,Y
setWH(yellow_tile, 128, 40); // Set Width, Height
setRGB0(yellow_tile, 255, 255, 0); // Set color
addPrim(ot[db][OTLEN - 1], yellow_tile); // Add primitive to ordering table
nextpri += sizeof(TILE);
// blue_tile
blue_tile = (TILE * ) nextpri; // blue_tile is a pointer to primbuf content at adress nextpri, that's cast (type converted) to a blue_tile struc.
setTile(blue_tile); // initialize the blue_tile structure ( fill the length and tag(?) value )
setXY0(blue_tile, CENTERX - 16, CENTERY - 32); // Set X,Y
setWH(blue_tile, 32, 64); // Set Width, Height
setRGB0(blue_tile, 60, 180, 255); // Set color
addPrim(ot[db][OTLEN - 2], blue_tile); // Add primitive to ordering table
nextpri += sizeof(TILE); // Increment the adress nextpri points to by the size of TILE struct
// pink_tile
pink_tile = (TILE * ) nextpri; // pink_tile is a pointer to primbuf content at adress nextpri, that's cast (type converted) to a TILE struc.
setTile(pink_tile); // initialize the TILE structure ( fill the length and tag(?) value )
setXY0(pink_tile, CENTERX, CENTERY - 64); // Set X,Y
setWH(pink_tile, 64, 64); // Set Width, Height
setRGB0(pink_tile, 255, 32, 255); // Set color
addPrim(ot[db][OTLEN - 2], pink_tile); // Add primitive to ordering table
nextpri += sizeof(TILE);
i++;
FntPrint(0, "Hello tile ! %d\n", i);
FntFlush(0);
#ifndef STANDALONE
if (i == timeout){
useOT = 0;
next_overlay = MOTHERSHIP;
break;
}
#endif
display();
}
return next_overlay;
}

View File

@ -0,0 +1,52 @@
#include "../common.h"
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes
char primbuff[2][32768]; // double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes
char *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0]
uint8_t db = 0; // index of which buffer is used, values 0, 1
CVECTOR BGcolor = { 50, 255, 150 };
void init(void)
{
ResetGraph(0);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
SetDispMask(1); // Display on screen
setRGB0(&draw[0], BGcolor.r, BGcolor.g, BGcolor.b); // set color for first draw area
setRGB0(&draw[1], BGcolor.r, BGcolor.g, BGcolor.b); // set color for second draw area
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
// We're using a reverse OT, so we want to display the last item first. See PsyQ's LibRef47.pdf, p.277
DrawOTag(&ot[db][OTLEN - 1]);
// Comment above line, and uncomment the following line to use a regular oredered OT. Comment l.71 and Uncomment l.73 accordingly
db = !db;
nextpri = primbuff[db];
}
#include "hello_ovl_tile.c"
int main(void)
{
ovl_main_tile();
};

BIN
STR/menu1.str Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.