TrezorPayload stores 32 random bytes used for unlocking
the master key using a Trezor security module. The randomness makes sure
that a unique unlock value is used for each gocryptfs filesystem.
We are clean again.
Warnings were:
internal/fusefrontend/fs.go:443:14: should omit type string from declaration
of var cTarget; it will be inferred from the right-hand side
internal/fusefrontend/xattr.go:26:1: comment on exported method FS.GetXAttr
should be of the form "GetXAttr ..."
internal/syscallcompat/sys_common.go:9:7: exported const PATH_MAX should have
comment or be unexported
Reading system.posix_acl_access and system.posix_acl_default
should return EOPNOTSUPP to inform user-space that we do not
support ACLs.
xftestest essientially does
chacl -l | grep "Operation not supported"
to determine if the filesystem supports ACLs, and used to
wrongly believe that gocryptfs does.
mv is unhappy when we return EPERM when it tries to set
system.posix_acl_access:
mv: preserving permissions for ‘b/x’: Operation not permitted
Now we return EOPNOTSUPP like tmpfs does and mv seems happy.
Values a binary-safe, there is no need to base64-encode them.
Old, base64-encoded values are supported transparently
on reading. Writing xattr values now always writes them binary.
We previously returned EPERM to prevent the kernel from
blacklisting our xattr support once we get an unsupported
flag, but this causes lots of trouble on MacOS:
Cannot save files from GUI apps, see
https://github.com/rfjakob/gocryptfs/issues/229
Returning ENOSYS triggers the dotfiles fallback on MacOS
and fixes the issue.
OpenDir and ListXAttr skip over corrupt entries,
readFileID treats files the are too small as empty.
This improves usability in the face of corruption,
but hides the problem in a log message instead of
putting it in the return code.
Create a channel to report these corruptions to fsck
so it can report them to the user.
Also update the manpage and the changelog with the -fsck option.
Closes https://github.com/rfjakob/gocryptfs/issues/191
Most corruption cases except xattr should be covered.
With test filesystem.
The output is still pretty ugly. xattr support will
be added in the next commits.
This should not happen via FUSE as the kernel caps the size,
but with fsck we have the first user that calls Read directly.
For symmetry, check it for Write as well.
A few places have called tlog.Warn.Print, which directly
calls into log.Logger due to embedding, losing all features
of tlog.
Stop embedding log.Logger to make sure the internal functions
cannot be called accidentially and fix (several!) instances
that did.
We now print the number in a debug message, so define
the numeric values explicitely instead of using iota.
This way you don't have to understand how iota works
to find out what the number means. Lack of understanding
of how iota works is also the reason why the numbers
start at 3 (to keep the current behavoir).
Overwrite the masterkey with zeros once we
have encrypted it, and let it run out of scope.
Also get rid of the password duplicate in
readpassword.Twice.
As soon as we don't need them anymore, overwrite
keys with zeros and make sure they run out of scope
so we don't create a risk of inadvertedly using all-zero
keys for encryption.
https://github.com/rfjakob/gocryptfs/issues/211
Both fusefrontend and fusefrontend_reverse were doing
essentially the same thing, move it into main's
initFuseFrontend.
A side-effect is that we have a reference to cryptocore
in main, which will help with wiping the keys on exit
(https://github.com/rfjakob/gocryptfs/issues/211).
$ go.gcc build
# github.com/rfjakob/gocryptfs/internal/syscallcompat
internal/syscallcompat/unix2syscall_linux.go:32:13: error: incompatible types in assignment (cannot use type int64 as type syscall.Timespec_sec_t)
s.Atim.Sec = u.Atim.Sec
^
On mips64le, syscall.Getdents() and struct syscall.Dirent do
not fit together, causing our Getdents implementation to
return garbage ( https://github.com/rfjakob/gocryptfs/issues/200
and https://github.com/golang/go/issues/23624 ).
Switch to unix.Getdents which does not have this problem -
the next Go release with the syscall package fixes is too
far away, and will take time to trickle into distros.
Steps to reproduce:
* Create a regular reverse mount point
* Create a file "test" in the original directory
* Access the corresponding encrypted directory in the mount point (ls <encrypted dir>)
* Quickly delete the file in the original data - instead create a device node
* Access the file again, it will access the device node and attempt to read from it
Fixes https://github.com/rfjakob/gocryptfs/issues/187
Unfortunately, faccessat in Linux ignores AT_SYMLINK_NOFOLLOW,
so this is not completely atomic.
Given that the information you get from access is not very
interesting, it seems good enough.
https://github.com/rfjakob/gocryptfs/issues/165
Add faccessat(2) with a hack for symlink, because the
kernel does not actually looks at the passed flags.
From man 2 faccessat:
C library/kernel differences
The raw faccessat() system call takes only the first three argu‐
ments. The AT_EACCESS and AT_SYMLINK_NOFOLLOW flags are actually
implemented within the glibc wrapper function for faccessat().
...when opening intermedia directories to give us an
extra layer of safety.
From the FreeBSD man page:
This flag can be used to prevent applications with elevated
privileges from opening files which are even unsafe to open with O_RDONLY,
such as device nodes.
...by using the new OpenNofollow helper.
The benchmark shows a small but acceptable performance loss:
$ ./benchmark-reverse.bash
LS: 2.182
CAT: 18.221
Tracking ticket: https://github.com/rfjakob/gocryptfs/issues/165
Now that we have Fstatat we can use it in Getdents to
get rid of the path name.
Also, add an emulated version of getdents for MacOS. This allows
to drop the !HaveGetdents special cases from fusefrontend.
Modify the getdents test to test both native getdents and the emulated
version.
In PlaintextNames mode the "gocryptfs.longname." prefix does not have any
special meaning. We should not attempt to delete any .name files.
Partially fixes https://github.com/rfjakob/gocryptfs/issues/174
This is already done in regular mode, but was missing when PlaintextNames mode
is enabled. As a result, symlinks created by non-root users were still owned
by root afterwards.
Fixes https://github.com/rfjakob/gocryptfs/issues/176
In PlaintextNames mode the "gocryptfs.longname." prefix does not have any
special meaning. We should not attempt to read the directory IV or to
create special .name files.
Partially fixes https://github.com/rfjakob/gocryptfs/issues/174